Question #287661

Test the series: infinity sigma n=1 (-1)^ n-1 sin nx n sqrt n for absolute and conditional convergence

1
Expert's answer
2022-01-17T15:26:46-0500

(1)n1sinnxnn\sum (-1)^ {n-1}\frac{ sin nx}{ n \sqrt {n}}


an=(1)n1sinnxnn=sinnxnna_n=|(-1)^ {n-1}\frac{ sin nx}{ n \sqrt {n}}|=\frac{ |sin nx|}{ n \sqrt {n}}


bn=1nnb_n=\frac{1}{n\sqrt n}


since anbna_n\le b_n and bn\sum b_n converges , an\sum a_n converges as well


so, series (1)n1sinnxnn\sum (-1)^ {n-1}\frac{ sin nx}{ n \sqrt {n}} converges absolutely


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS