Test the series: infinity sigma n=1 (-1)^ n-1 sin nx n sqrt n for absolute and conditional convergence
∑(−1)n−1sinnxnn\sum (-1)^ {n-1}\frac{ sin nx}{ n \sqrt {n}}∑(−1)n−1nnsinnx
an=∣(−1)n−1sinnxnn∣=∣sinnx∣nna_n=|(-1)^ {n-1}\frac{ sin nx}{ n \sqrt {n}}|=\frac{ |sin nx|}{ n \sqrt {n}}an=∣(−1)n−1nnsinnx∣=nn∣sinnx∣
bn=1nnb_n=\frac{1}{n\sqrt n}bn=nn1
since an≤bna_n\le b_nan≤bn and ∑bn\sum b_n∑bn converges , ∑an\sum a_n∑an converges as well
so, series ∑(−1)n−1sinnxnn\sum (-1)^ {n-1}\frac{ sin nx}{ n \sqrt {n}}∑(−1)n−1nnsinnx converges absolutely
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments