If [1,6] is divided into 5 equal partitions, the partitions will be :-
P={Pi}={[xi,xi+1]}={[i,i+1]},(i=1,2,3,4,5)Now we know that,Mi=sup{f(x):xi≤x≤xi+1}=sup{f(x):i≤x≤i+1}And, mi=inf{f(x):xi≤x≤xi+1}=inf{f(x):i≤x≤i+1}
As f(x) is a increasing function over positive numbers so,
Mi=f(xi+1)=f(i+1)=(i+1)2−2=i2+2i−1and, mi=f(xi)=f(i)=i2−2Now, Δxi=xi+1−xi=i+1−i=1
∴U(P,f)−L(,U,f)=∑i=15MiΔxi−∑i=15miΔxi=∑i=15(Mi−mi)Δxi=∑i=15(i2+2i−1−i2+2)×1=∑i=15(2i+1)=2×25×6+5=35>0⇒U(P,f)>L(P,f)
(Hence verified.)
Comments