Question #287236

For the function f(x)= x^2-2 defined over[1,6],





Verify L(P,f)≤U(P,f) where is the partition which divide [1,6] into five equal intervals

1
Expert's answer
2022-01-14T06:48:30-0500

If [1,6] is divided into 5 equal partitions, the partitions will be :-

P={Pi}={[xi,xi+1]}={[i,i+1]},(i=1,2,3,4,5)Now we know that,Mi=sup{f(x):xixxi+1}=sup{f(x):ixi+1}And, mi=inf{f(x):xixxi+1}=inf{f(x):ixi+1}P=\{P_i\}=\{[x_i,x_{i+1}]\}=\{[i,i+1]\}, \\(i=1,2,3,4,5)\\ \text{Now we know that,}\\ M_i= sup\{f(x) : x_i\leq x\leq x_{i+1} \}\\ =sup\{f(x) : i\leq x\leq {i+1} \}\\ \text{And, }\\ m_i= inf \{f(x) : x_i\leq x\leq x_{i+1} \}\\ =inf\{f(x) : i\leq x\leq {i+1} \}

As f(x) is a increasing function over positive numbers so,

Mi=f(xi+1)=f(i+1)=(i+1)22=i2+2i1and, mi=f(xi)=f(i)=i22Now, Δxi=xi+1xi=i+1i=1M_i=f(x_{i+1})=f(i+1)=(i+1)^2-2\\ =i^2+2i-1\\ \text{and, }\\ m_i=f(x_i)=f(i)=i^2-2 \\\text{Now, }\Delta x_i=x_{i+1}-x_i=i+1-i=1

U(P,f)L(,U,f)=i=15MiΔxii=15miΔxi=i=15(Mimi)Δxi=i=15(i2+2i1i2+2)×1=i=15(2i+1)=2×5×62+5=35>0U(P,f)>L(P,f)\therefore U(P,f)-L(,U,f)\\ =\sum_{i=1}^5 M_i\Delta x_i-\sum_{i=1}^5 m_i\Delta x_i\\ =\sum_{i=1}^5 (M_i-m_i)\Delta x_i\\ =\sum_{i=1}^5 (i^2+2i-1-i^2+2)\times 1\\ =\sum_{i=1}^5 (2i+1) \\= 2\times \dfrac{5\times 6}{2}+5=35>0 \\\Rightarrow U(P,f)>L(P,f)

(Hence verified.)






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS