Question #287073

prove that the function f given by


f(x)={ 2,if x is irrational


-2,if x is rational


is discontinuous, for all x€R,using the sequential definition of continuity

1
Expert's answer
2022-01-14T04:18:05-0500

ANSWER.

By the definition of continuity from condition limnxn=a\lim _{ n\rightarrow \infty }{ { x }_{ n } } =a it follows limnf(xn)=f(a)\lim _{ n\rightarrow \infty }{ { f(x }_{ n })=f(a) } \\ \\ . Therefore , if limnxn=limnyn=a\lim _{ n\rightarrow \infty }{ { x }_{ n } } =\lim _{ n\rightarrow \infty }{ { y }_{ n } } =a then limnf(xn)=limnf( yn)  \lim _{ n\rightarrow \infty }{ { f(x }_{ n })=\lim _{ n\rightarrow \infty }{ { f(\ y }_{ n })\ \ } }

Let aa be a real number and nn be a natural number. Between the numbers a1/n,a+1/na-1/n , a+1/n we choose a rational number xnx_n and irrational number yny_n . Since a1n<xn<a+1n,a1n<yn<a+1na-\frac { 1 }{ n } <{ x }_{ n }<a+\frac { 1 }{ n } \quad ,a-\frac { 1 }{ n } <{ y }_{ n }<a+\frac { 1 }{ n } , and limn(a1n)=limn(a+1n)=a\lim _{ n\rightarrow \infty }{ \left( a-\frac { 1 }{ n } \right) = } \lim _{ n\rightarrow \infty }{ \left( a+\frac { 1 }{ n } \right) =a }, then limnxn=limnyn=a\lim _{ n\rightarrow \infty }{ { x }_{ n }= } \lim _{ n\rightarrow \infty }{ { y }_{ n }=a } . For sequences (xn) in Q, (yn) in RQ\left( { x }_{ n } \right) \ in\ Q,\ \left( { y }_{ n } \right) \ in\ R\setminus Q we have f(xn)=2, f(yn)=2f\left( { x }_{ n } \right) =-2,\ f\left( { y }_{ n } \right) = 2 for all nNn\in N . So

limnf(xn)=22= limnf( yn)  .\lim _{ n\rightarrow \infty }{ { f(x }_{ n })=-2\neq } 2=\ \lim _{ n\rightarrow \infty }{ { f(\ y }_{ n })\ \ } .

Hence, ff is not continuous at aa , and as aa was arbitrary , that ff is not continuous at any aR.a\in R.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS