Question #286219

Let {an} sequence is defined as a1=3, an+1=1/5(an)


converges to zero. Prove that




1
Expert's answer
2022-01-11T00:03:47-0500

Solution:

a1=3,an+1=15(an)a2=15(a1)=15(3)=35a3=15(a2)=15(35)=325a4=15(a3)=15(325)=3125a_1=3, a_{n+1}=\dfrac15(a_n) \\ \Rightarrow a_{2}=\dfrac15(a_1)= \dfrac15(3)=\dfrac35 \\ \Rightarrow a_{3}=\dfrac15(a_2)= \dfrac15(\dfrac35)=\dfrac3{25} \\ \Rightarrow a_{4}=\dfrac15(a_3)= \dfrac15(\dfrac3{25})=\dfrac3{125}

Thus, an+1=35na_{n+1}=\dfrac{3}{5^n}

Now, limnan+1=limn35n\lim_{n\rightarrow \infty}a_{n+1}=\lim_{n\rightarrow \infty}\dfrac{3}{5^n}

=3=0=\dfrac{3}{\infty} \\=0



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS