lim n → ∞ [ 1 2 n − 1 + 1 4 n − 2 2 + 1 6 n − 3 2 + ⋯ + 1 n ] lim n → ∞ ∑ r = 1 n 1 2 r n − r 2 lim n → ∞ ∑ r = 1 n 1 n 2 r n − ( r n ) 2 \lim_{n\to \infty}\left[ \frac{1}{\sqrt{2n-1}}+\frac{1}{\sqrt{4n-2^2}}+\frac{1}{\sqrt{6n-3^2}}+\cdots +\frac{1}{n}\right]\\
\lim_{n\to \infty} \sum_{r=1}^n \frac{1}{\sqrt{2rn-r^2}}\\
\lim_{n\to \infty} \sum_{r=1}^n \frac{1}{n\sqrt{\frac{2r}{n}-(\frac{r}{n})^2}}\\ lim n → ∞ [ 2 n − 1 1 + 4 n − 2 2 1 + 6 n − 3 2 1 + ⋯ + n 1 ] lim n → ∞ ∑ r = 1 n 2 r n − r 2 1 lim n → ∞ ∑ r = 1 n n n 2 r − ( n r ) 2 1
Let x = r n , d x = 1 n x=\frac{r}{n}, dx=\frac{1}{n} x = n r , d x = n 1
The limit becomes:
∫ 0 1 1 2 x − x 2 d x = ∫ 0 1 1 1 − ( x − 1 ) 2 d x \int_0^1\frac{1}{\sqrt{2x-x^2}}~dx\\
=\int_0^1\frac{1}{\sqrt{1-(x-1)^2}}~dx\\ ∫ 0 1 2 x − x 2 1 d x = ∫ 0 1 1 − ( x − 1 ) 2 1 d x
Let x − 1 = t , d x = d t x-1=t, dx=dt x − 1 = t , d x = d t . When x = 0 , t = − 1 , x = 1 , t = 0. x=0, t=-1, x=1, t=0. x = 0 , t = − 1 , x = 1 , t = 0.
∫ − 1 0 d t 1 − t 2 = sin − 1 t ∣ − 1 0 = sin − 1 0 − sin − 1 ( − 1 ) = 0 − − π 2 = π 2 \int_{-1}^0\frac{dt}{\sqrt{1-t^2}}=\sin^{-1}t \Biggr |_{-1}^0=\sin^{-1}0-\sin^{-1}(-1)=0-_-\frac{\pi}{2}=\frac{\pi}{2} ∫ − 1 0 1 − t 2 d t = sin − 1 t ∣ ∣ − 1 0 = sin − 1 0 − sin − 1 ( − 1 ) = 0 − − 2 π = 2 π
Hence,
lim n → ∞ [ 1 2 n − 1 + 1 4 n − 2 2 + 1 6 n − 3 2 + ⋯ + 1 n ] = π 2 \lim_{n\to \infty}\left[ \frac{1}{\sqrt{2n-1}}+\frac{1}{\sqrt{4n-2^2}}+\frac{1}{\sqrt{6n-3^2}}+\cdots +\frac{1}{n}\right]=\frac{\pi}{2} lim n → ∞ [ 2 n − 1 1 + 4 n − 2 2 1 + 6 n − 3 2 1 + ⋯ + n 1 ] = 2 π
Comments