limn→∞[2n−11+4n−221+6n−321+⋯+n1]limn→∞∑r=1n2rn−r21limn→∞∑r=1nnn2r−(nr)21
Let x=nr,dx=n1
The limit becomes:
∫012x−x21 dx=∫011−(x−1)21 dx
Let x−1=t,dx=dt . When x=0,t=−1,x=1,t=0.
∫−101−t2dt=sin−1t∣∣−10=sin−10−sin−1(−1)=0−−2π=2π
Hence,
limn→∞[2n−11+4n−221+6n−321+⋯+n1]=2π
Comments