Question #285787

prove that lim n->infinity [1/√2n-1 +1/√4n-2^2 +1/√6n-3^2 +.......+1/n]=π/2

1
Expert's answer
2022-01-11T00:00:11-0500

limn[12n1+14n22+16n32++1n]limnr=1n12rnr2limnr=1n1n2rn(rn)2\lim_{n\to \infty}\left[ \frac{1}{\sqrt{2n-1}}+\frac{1}{\sqrt{4n-2^2}}+\frac{1}{\sqrt{6n-3^2}}+\cdots +\frac{1}{n}\right]\\ \lim_{n\to \infty} \sum_{r=1}^n \frac{1}{\sqrt{2rn-r^2}}\\ \lim_{n\to \infty} \sum_{r=1}^n \frac{1}{n\sqrt{\frac{2r}{n}-(\frac{r}{n})^2}}\\

Let x=rn,dx=1nx=\frac{r}{n}, dx=\frac{1}{n}

The limit becomes:

0112xx2 dx=0111(x1)2 dx\int_0^1\frac{1}{\sqrt{2x-x^2}}~dx\\ =\int_0^1\frac{1}{\sqrt{1-(x-1)^2}}~dx\\

Let x1=t,dx=dtx-1=t, dx=dt . When x=0,t=1,x=1,t=0.x=0, t=-1, x=1, t=0.

10dt1t2=sin1t10=sin10sin1(1)=0π2=π2\int_{-1}^0\frac{dt}{\sqrt{1-t^2}}=\sin^{-1}t \Biggr |_{-1}^0=\sin^{-1}0-\sin^{-1}(-1)=0-_-\frac{\pi}{2}=\frac{\pi}{2}

Hence,

limn[12n1+14n22+16n32++1n]=π2\lim_{n\to \infty}\left[ \frac{1}{\sqrt{2n-1}}+\frac{1}{\sqrt{4n-2^2}}+\frac{1}{\sqrt{6n-3^2}}+\cdots +\frac{1}{n}\right]=\frac{\pi}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS