fβ²β²(x)=hβ0limβhfβ²(x+h)βfβ²(x)β=
=hβ0limβhh1ββ0limβh1βfβ²(x+h)βfβ²(x+hβh1β)ββh2ββ0limβh2βfβ²(x)βfβ²(xβh2β)ββ
letting h=h1β=h2β, i.e. taking them all to zero at the same rate we have:
fβ²β²(x)=hβ0limβhhfβ²(x+h)βfβ²(x+hβh)ββhfβ²(x)βfβ²(xβh)ββ=hβ0limβh2f(x+h)+f(xβh)β2f(x)β
then:
fβ²β²(a)=hβ0limβh2f(a+h)+f(aβh)β2f(a)β
example:
for fβ²(x)=β£xβ£ :
by LβHΓ΄pitalβs rule we have:
hβ0limβh2f(x+h)+f(xβh)β2f(x)β=hβ0limβ2hfβ²(x+h)βfβ²(x)β=
=hβ0limβ2hβ£0+hβ£ββ£0βhβ£β=0
That means the limit exists at x = 0, but fβ²(x)=β£xβ£ is not differentiable at 0, so fβ²β²(0)
does not exist.
Comments