Question #280875

Find the limit superior and the limit inferior of the following sequences






a) {(1 +






1






𝑛






)






𝑛+1






}






b) {






(βˆ’1)






𝑛






𝑛2






}

1
Expert's answer
2021-12-20T11:28:54-0500

Solution:

Assume the sequences are as follows:

(a) {an}={1n+(βˆ’1)n}\{a_n\}=\{\frac{1}{n}+(-1)^n\}∣an∣=∣1n+(βˆ’1)nβˆ£β‰€2|a_n|=|\frac{1}{n}+(-1)^n|\leq2 for all integers nβ‰₯1n\geq1. Hence {an}\{a_n\} is bounded.

The first few terms are {0,32,βˆ’23,54,βˆ’45,76,⋯ }\{0,\frac{3}{2},\frac{-2}{3},\frac{5}{4},\frac{-4}{5},\frac{7}{6},\cdots\}. The subsequence {a2n}={32,54,76,⋯ }\{a_{2n}\}=\{\frac{3}{2},\frac{5}{4},\frac{7}{6},\cdots\} converges to 1 and the subsequence {a2nβˆ’1}={0,βˆ’23,βˆ’43,⋯ }\{a_{2n-1}\}=\{0,\frac{-2}{3},\frac{-4}{3},\cdots\} converges to -1. Hence S={βˆ’1,1}S=\{-1,1\}

lim inf⁑an=inf⁑(S)=βˆ’1lim sup⁑an=sup⁑(S)=1\liminf a_n=\inf(S)=-1\\ \limsup a_n=\sup(S)=1

(b)

xn=(βˆ’1)n1+nnx_{n}=(-1)^{n} \frac{1+n}{n}

Since 1+nn=1+1nβ‰₯0\frac{1+n}{n}=1+\frac{1}{n} \geq 0 for any n∈Nn \in \mathbb{N} we have

lim⁑nβ†’βˆžsup⁑xn=lim⁑kβ†’βˆžx2k=1\lim _{n \rightarrow \infty} \sup x_{n}=\lim _{k \rightarrow \infty} x_{2 k}=1

lim sup⁑nβ†’βˆžxn=lim⁑kβ†’βˆžx2k=1\limsup _{n \rightarrow \infty} x_{n}=\lim _{k \rightarrow \infty} x_{2 k}=1

and

lim inf⁑nβ†’βˆžxn=lim⁑kβ†’βˆžx2k+1=βˆ’1\liminf _{n \rightarrow \infty} x_{n}=\lim _{k \rightarrow \infty} x_{2 k+1}=-1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS