Assume the sequences are as follows:
(a) {anβ}={n1β+(β1)n}β£anββ£=β£n1β+(β1)nβ£β€2 for all integers nβ₯1. Hence {anβ} is bounded.
The first few terms are {0,23β,3β2β,45β,5β4β,67β,β―}. The subsequence {a2nβ}={23β,45β,67β,β―} converges to 1 and the subsequence {a2nβ1β}={0,3β2β,3β4β,β―} converges to -1. Hence S={β1,1}
liminfanβ=inf(S)=β1limsupanβ=sup(S)=1
(b)
xnβ=(β1)nn1+nβ
Since n1+nβ=1+n1ββ₯0 for any nβN we have
limnβββsupxnβ=limkβββx2kβ=1
limsupnβββxnβ=limkβββx2kβ=1
and
liminfnβββxnβ=limkβββx2k+1β=β1
Comments