Question #280123

For the function tan^(−1) 𝑥  find the infinite Taylor series at 𝑎 = 0, the radius of convergence, range of convergence, derivative, integral and the product with itself.  


1
Expert's answer
2021-12-21T10:46:21-0500

Recall well-known series,11x=1+x+x2+=n=0xn,x<1tan1(x)=11+x2dx=11(x2)dx=n=0(x2)ndx,x2<1x2<1x<1=n=0(1)nx2ndx,x<1=n=0(1)nx2n+12n+1,x<1R=1When x=1,n=0(1)nx2n+12n+1=n=0(1)n+12n+1which converges by Alternating series test as 12n+10 and it also decreasingWhen x=1,n=0(1)nx2n+12n+1=n=0(1)n2n+1which converges by Alternating series test as 12n+10 and it also decreasingHence, the Radius of convergence R=1The Range of convergence I=[1,1]The derivative ddx(tan1x)=11+x2 To obtain the Integral, we shall use Integration by part, Let J=tan1(x)dx,u=tan1(x)dv=dxdu=11+x2dxv=xJ=tan1(x)dx=xtan1(x)122x1+x2dx=xtan1(x)ln(x2+1)2+CThe Product(tan1x)2=(x13x3+15x5+)2=x223x4+2345x6\text{Recall well-known series}, \\ \frac{1}{1-x} =1+x+x^{2} +\cdots =\sum _{n=0}^{\infty }x^{n} , \left|x\right|<1 \\ \begin{array}{l} {\Rightarrow \tan ^{-1} \left(x\right)=\int \frac{1}{1+x^{2} } dx =\int \frac{1}{1-\left(-x^{2} \right)} dx } \\ {=\int \sum _{n=0}^{\infty }\left(-x^{2} \right)^{n} dx ,\left|x^{2} \right|<1\Rightarrow \left|x\right|^{2} <1\Rightarrow \left|x\right|<1} \\ {=\int \sum _{n=0}^{\infty }\left(-1\right)^{n} x^{2n} dx ,\left|x\right|<1} \\ {=\sum _{n=0}^{\infty }\frac{\left(-1\right)^{n} x^{2n+1} }{2n+1} ,\left|x\right|<1} \end{array} \\ \Rightarrow R=1 \\ \text{When } x=-1,\sum _{n=0}^{\infty }\frac{\left(-1\right)^{n} x^{2n+1} }{2n+1} =\sum _{n=0}^{\infty }\frac{\left(-1\right)^{n+1} }{2n+1} \text{which converges by Alternating series test as } \frac{1}{2n+1} \to 0 \text{ and it also decreasing} \\ \text{When } x=1,\sum _{n=0}^{\infty }\frac{\left(-1\right)^{n} x^{2n+1} }{2n+1} =\sum _{n=0}^{\infty }\frac{\left(-1\right)^{n} }{2n+1} \text{which converges by Alternating series test as } \frac{1}{2n+1} \to 0 \text{ and it also decreasing} \\ \text{Hence, the Radius of convergence } R=1 \\ \text{The Range of convergence } I=[-1,1] \\ \text{The derivative } \frac{d}{dx} \left(\tan ^{-1} x\right)=\frac{1}{1+x^{2} } \\ \text{ To obtain the Integral, we shall use Integration by part, } \\ \text{Let } J=\int \tan ^{-1} \left(x\right)dx , u=\tan ^{-1} \left(x\right) \quad dv=dx \\ \hspace{98pt} du=\frac{1}{1+x^{2} } dx \qquad v=x \\ \Rightarrow J=\int \tan ^{-1} \left(x\right)dx =x\tan ^{-1} \left(x\right)-\frac{1}{2} \int \frac{2x}{1+x^{2} } dx \\ \hspace{95pt}=x\tan ^{-1} \left(x\right)-\frac{\ln \left(x^{2} +1\right)}{2} +C \\ \text{The Product} \\ {\left( {{{\tan }^{ - 1}}x} \right)^2} = {\left( {x - \frac{1}{3}{x^3} + \frac{1}{5}{x^5} + \cdots } \right)^2} = {x^2} - \frac{2}{3}{x^4} + \frac{{23}}{{45}}{x^6} - \cdots


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS