Question #280112

A pendulum of length š‘™ at an angle 2š›¼. Find the time period T of the pendulum. Also let š›¼ → 0 and obtain the well-known formula š‘‡ = 2šœ‹āˆš š‘™ /š‘” .


1
Expert's answer
2021-12-20T11:25:27-0500

F=mamax=āˆ’Tsin⁔θIf sin⁔θ∼θmax=āˆ’TĪøTaking Īø=xlmax=āˆ’Txl(i)may=Tcosā”Īøāˆ’mgIf ay=0,T=mgax=āˆ’gxl=āˆ’Ļ‰2x⇒ω=glT=2πω=2Ļ€lgIf Īø=2α,T=2Ļ€2αF = ma \\ m{a_x} = - T\sin \theta \\ \text{If } \sin \theta \sim \theta \\ m{a_x} = - T\theta \\ \text{Taking } \theta = \frac{x}{l} \\ m{a_x} = - T\frac{x}{l} \qquad (i) \\ m{a_y} = T\cos \theta - mg \\ \text{If } {a_y} = 0, T = mg \\ \begin{array}{l} {a_x} = \frac{{ - gx}}{l} = - {\omega ^2}x\\ \Rightarrow \omega = \sqrt {\frac{g}{l}} \\ T = \frac{{2\pi }}{\omega } = 2\pi \sqrt {\frac{l}{g}} \end{array} \\ \text{If } \theta = 2\alpha ,T = 2\pi \sqrt {2\alpha }


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS