Given n→∞limr=1∑3n(4r+n)3n2n→∞limr=1∑3n(4n+r)3n2=n→∞limr=1∑3n(4+nr)3n1Using the Riemann sum put xr=nr⟹xr+1−xr=n1=Δxwhen r=1;n→∞limnr=n→∞limn1=0when r=3n;n→∞limnr=n→∞limn3n=3⟹n→∞limr=1∑3n(4n+r)3n2=∫03(4+x)3dx=[2(4+x)2−1]03=98−1+321=156833∴n→∞limr=1∑3n(4n+r)3n2=156833
Comments