Question #275105

Evaluate


lim 3nΣr=1 n^2/(4n+r)^3


n→∞



1
Expert's answer
2021-12-14T16:10:44-0500

Given limnr=13nn2(4r+n)3limnr=13nn2(4n+r)3=limnr=13n1n(4+rn)3Using the Riemann sum put xr=rn    xr+1xr=1n=Δxwhen r=1;limnrn=limn1n=0when r=3n;limnrn=limn3nn=3    limnr=13nn2(4n+r)3=03dx(4+x)3=[12(4+x)2]03=198+132=331568limnr=13nn2(4n+r)3=331568\displaystyle\text{Given } \lim_{n \rightarrow \infty} \sum_{r=1}^{3n}\frac{n^2}{(4r+n)^3} \\ \lim_{n \rightarrow \infty} \sum_{r=1}^{3n}\frac{n^2}{(4n+r)^3} = \lim_{n \rightarrow \infty} \sum_{r=1}^{3n}\frac{\frac{1}{n}}{(4+\frac{r}{n})^3} \\ \text{Using the Riemann sum put } x_{r} = \frac{r}{n} \implies x_{r+1} - x_r = \frac{1}{n} = \Delta x \\ \text{when } r=1 ; \lim_{n \rightarrow \infty} \frac{r}{n} = \lim_{n \rightarrow \infty} \frac{1}{n} = 0 \\ \text{when } r=3n ; \lim_{n \rightarrow \infty} \frac{r}{n} = \lim_{n \rightarrow \infty} \frac{3n}{n} = 3 \\ \implies \lim_{n \rightarrow \infty} \sum_{r=1}^{3n}\frac{n^2}{(4n+r)^3} = \int_0^3 \frac{dx}{(4+x)^3} = \left[\frac{-1}{2(4+x)^2}\right]_{0}^3 = \frac{-1}{98} + \frac{1}{32} = \frac{33}{1568} \\ \therefore \lim_{n \rightarrow \infty} \sum_{r=1}^{3n}\frac{n^2}{(4n+r)^3} = \frac{33}{1568}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS