Find the value of m for which lim x->infinity
(x+1)(2x-3)(2-3x)/(4-x+mx³) exists.
limx→∞(x+1)(2x−3)(2−3x)(4−x+mx3)=limx→∞−6x3+7x2+7x−6(4−x+mx3)\lim_{x\to\infty} \frac{(x+1)(2x-3)(2-3x)}{(4-x+mx^3)}\\ =\lim_{x\to\infty} \frac{-6x^3+7x^2+7x-6}{(4-x+mx^3)}\\limx→∞(4−x+mx3)(x+1)(2x−3)(2−3x)=limx→∞(4−x+mx3)−6x3+7x2+7x−6
Divide numerator and denominator by x3x^3x3
=limx→∞−6+7x+7x2−6x3(4x3−1x2+m)=−6m=\lim_{x\to\infty} \frac{-6+\frac{7}{x}+\frac{7}{x^2}-\frac{6}{x^3}}{(\frac{4}{x^3}-\frac{1}{x^2}+m)}\\ =\frac{-6}{m}=limx→∞(x34−x21+m)−6+x7+x27−x36=m−6
For limit to be exist, m≠0m\neq0m=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments