limx→0x3sin2x+msin3xlimx→0x3[2sinxcosx+m(3sinx−4sin3x)]limx→0x3sinx[2cosx+m(3−4sin2x)]limx→0x2[2cosx+m(3−4sin2x)]{∵limx→0xsinx=1}
As x→0 , denominator tends to , so the numerator also tends to 0.
Thus, limx→0 [2cosx+m(3−4sin2x)]=02+3m=0m=3−2
Comments