Question #269825

Find the value of m so that


lim (sin 2x + m sin 3x)/ x^3


x→0


is finite.

1
Expert's answer
2021-11-22T20:20:55-0500

limx0sin2x+msin3xx3limx0[2sinxcosx+m(3sinx4sin3x)]x3limx0sinx[2cosx+m(34sin2x)]x3limx0[2cosx+m(34sin2x)]x2{limx0sinxx=1}\begin{aligned} &\operatorname{lim}_{x \rightarrow 0} \frac{\sin 2 x+m \sin 3x}{x^{3}} \\ &lim_{x \rightarrow 0} \frac{[2 \sin x\cos x+m(3\sin x-4\sin^3x)]}{x^{3}} \\ &lim_{x \rightarrow 0} \frac{\sin x[2 \cos x+m(3-4\sin^2x)]}{x^{3}} \\ &lim_{x \rightarrow 0} \frac{[2 \cos x+m(3-4\sin^2x)]}{x^{2}} \\ &\{\because lim_{x \rightarrow 0} \frac{\sin x}{x}=1 \}\\ \end{aligned}

As x0x \rightarrow 0 , denominator tends to , so the numerator also tends to 0.

Thus, limx0 [2cosx+m(34sin2x)]=02+3m=0m=23lim_{x \rightarrow 0} \ [2 \cos x+m(3-4\sin^2x)]=0\\ 2+3m=0\\ m=\frac{-2}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS