Question #268383

If function f is defined in a sigma- finite measure space.we may choose the function pi n so that each vanishes outside a set of a finite measure.


1
Expert's answer
2021-11-21T16:49:28-0500

For each k ≥ 1, we partition the interval [0,∞] into disjoint interval as follows:

[0,∞] = [0, 1) \bigcup [1, 2)\bigcup · · · [n − 1, n) \bigcup [n,∞]


i=1n2n\bigcup^{n2^n}_{ i=1} [i12n,i2n)[n,)[\frac{i-1}{2^n},\frac{i}{2^n})\bigcup [n,\infin)


Define, for each 1 ≤ i ≤ n2n ,

Eni = f −1([i12n,i2n))([\frac{i-1}{2^n},\frac{i}{2^n}))


and En = f −1 ([n, ∞]). Define the function πn\pi_n (x) as follows:


i=1n2ni12nχEn,i+nχEn\displaystyle{\sum_{i=1}^{n2^n}}\frac{i-1}{2^n}\chi _{E_{n,i}}+n\chi_{E_n}


If f(x) < ∞, then there exists a positive integer n such that f(x) < n. Since x ∈ En,i for some

1 ≤ i ≤n2n , we have

0 ≤ f(x) −πn\pi_n(x) ≤ i2ni12n=12n\frac{i}{2^n}-\frac{i-1}{2^n}=\frac{1}{2^n}


If f(x) = ∞, then πn\pi_n(x) = n for every n. Thus, for each x ∈ E,

limnπn(x)=f(x)\displaystyle{\lim_{n\to\infin}}\pi_n(x)=f(x)


This gives us a sequence πn\pi_n(x) of simple functions on E converging to f(x).

We now show that πn\pi_n(x) ≤ πn+1\pi_{n+1}(x) for every integer x ∈ E. To do so, notice that for each

1 ≤ i ≤ n2nn2^n ,


En+1,2i1En+1,2i=f1([2i22n+1,2i12n+1))f1([2i12n+1,2i2n+1))=f1([i12n,i2n))=EniE_{n+1,2i-1}\bigcup E_{n+1,2i}=f^{-1}([\frac{2i-2}{2^{n+1}},\frac{2i-1}{2^{n+1}}))\bigcup f^{-1}([\frac{2i-1}{2^{n+1}},\frac{2i}{2^{n+1}}))=f^{-1}([\frac{i-1}{2^{n}},\frac{i}{2^{n}}))=E_{ni}


If x ∈ En,i for some 1 ≤ i ≤ n2nn2^n , then

πn(x)=i12n\pi_n(x)=\frac{i-1}{2^n}

On the other hand,

πn+1(x)=2i22n\pi_{n+1}(x)=\frac{2i-2}{2^n} or 2i12n\frac{2i-1}{2^n}


both of which are

i12n\ge \frac{i-1}{2^n}


If x ∈ En then πn\pi_n(x) = n. But,

f1([n,])=f1(n,n+1)f1([n+1,])f^{-1}([n,\infin])=f^{-1}(n,n+1)\bigcup f^{-1}([n+1,\infin])

If xf1(n,n+1)x\isin f^{-1}(n,n+1), then

πn+1(x)=i=n2n+1+1(n+1)2n+1i12n+1χEn,in2n+12n+1=πn(x)\pi_{n+1}(x)=\displaystyle{\sum_{i=n2^{n+1}+1}^{(n+1)2^{n+1}}}\frac{i-1}{2^{n+1}}\chi_{E_{n,i}}\ge \frac{n2^{n+1}}{2^{n+1}}=\pi_n(x)


If x ∈ f−1([k + 1,∞]), then πn+1\pi_{n+1}(x) = k + 1 > k = πn\pi_{n} . thus, we have shown that for every x ∈ E,

πn+1(x)πn(x)\pi_{n+1}(x)\ge \pi_{n}(x)

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS