y′′−xy′+y=0
It is clear from the equation above that it has no singular point. Therefore the range of x for which the solution is valid is (−∞,∞)
Let the solution of our equation be of the form y=n=0∑∞anxn .....(1)
From which,
y′=n=0∑∞nanxn−1=n=1∑∞nanxn−1
y′′=n=0∑∞n(n−1)anxn−2=n=2∑∞n(n−1)anxn−2
We then substitute the above expressions in our equation
n=2∑∞n(n−1)anxn−2−n=1∑∞nanxn+n=0∑∞anxn=0
n=0∑∞(n+1)(n+2)an+2xn−n=1∑∞nanxn+n=1∑∞anxn+a0=0
2a2+6a3x+n=1∑∞[(n+1)(n+2)an+2−nan+an]xn+a0=0
Comparing both sides of equal powers of x we have,
2a2+a0=0⟹a2=−21a0
6a3=0⟹a3=0
an+2=(n+1)(n+2)n−1an , n≥0 .....(1)
From the recurrence relation (2) above we get,
a4=(2+1)(2+2)1a2=−241a0
a5=0=a7=a9=0...
a6=(4+1)(4+2)4−1a4=101⋅(−241a0)=−2401a0
Substitute the values of a2,a3,a4,a5,a6 in the relation (1) to get:
y=a1x+a0(1−21x2−241x4−2401x6...)
∴ the solution to our equation is
y=Ax+B(1−21x2−241x4−2401x6...)
Where A and B are arbitrary constants.
Comments