Question #264932

Solve 𝑦 ′′ − 𝑥𝑦 ′ + 𝑦 = 0 assuming a power series. Find the range of 𝑥 for which the solution is valid


1
Expert's answer
2021-11-15T08:34:34-0500

yxy+y=0y''-xy'+y=0

It is clear from the equation above that it has no singular point. Therefore the range of x for which the solution is valid is (,)(-\infty,\infty)


Let the solution of our equation be of the form y=n=0anxny=\displaystyle\sum_{n=0}^{\infty}a_nx^n .....(1)

From which,

y=n=0nanxn1=n=1nanxn1y'=\displaystyle\sum_{n=0}^{\infty}na_nx^{n-1}=\displaystyle\sum_{n=1}^{\infty}na_nx^{n-1}

y=n=0n(n1)anxn2=n=2n(n1)anxn2y''=\displaystyle\sum_{n=0}^{\infty}n(n-1)a_nx^{n-2}=\displaystyle\sum_{n=2}^{\infty}n(n-1)a_nx^{n-2}

We then substitute the above expressions in our equation

n=2n(n1)anxn2n=1nanxn+n=0anxn=0\displaystyle\sum_{n=2}^{\infty}n(n-1)a_nx^{n-2}-\displaystyle\sum_{n=1}^{\infty}na_nx^{n}+\displaystyle\sum_{n=0}^{\infty}a_nx^n=0

n=0(n+1)(n+2)an+2xnn=1nanxn+n=1anxn+a0=0\displaystyle\sum_{n=0}^{\infty}(n+1)(n+2)a_{n+2}x^{n}-\displaystyle\sum_{n=1}^{\infty}na_nx^n+\displaystyle\sum_{n=1}^{\infty}a_nx^n+a_0=0

2a2+6a3x+n=1[(n+1)(n+2)an+2nan+an]xn+a0=02a_2+6a_3x+\displaystyle\sum_{n=1}^{\infty}[(n+1)(n+2)a_{n+2}-na_n+a_n]x^n+a_0=0

Comparing both sides of equal powers of x we have,

2a2+a0=0    a2=12a02a_2+a_0=0\implies a_2=-\frac{1}{2}a_0

6a3=0    a3=06a_3=0\implies a_3=0

an+2=n1(n+1)(n+2)ana_{n+2}=\frac{n-1}{(n+1)(n+2)}a_n , n0n\ge 0 .....(1)

From the recurrence relation (2) above we get,

a4=1(2+1)(2+2)a2=124a0a_{4}=\frac{1}{(2+1)(2+2)}a_2=-\frac{1}{24}a_0

a5=0=a7=a9=0...a_5=0=a_7=a_9=0...

a6=41(4+1)(4+2)a4=110(124a0)=1240a0a_{6}=\frac{4-1}{(4+1)(4+2)}a_4=\frac{1}{10}\cdot (-\frac{1}{24}a_0)=-\frac{1}{240}a_0

Substitute the values of a2,a3,a4,a5,a6a_2,a_3,a_4,a_5,a_6 in the relation (1) to get:

y=a1x+a0(112x2124x41240x6...)y=a_1x+a_0(1-\frac{1}{2}x^2-\frac{1}{24}x^4-\frac{1}{240}x^6...)

\therefore the solution to our equation is

y=Ax+B(112x2124x41240x6...)y=Ax+B(1-\frac{1}{2}x^2-\frac{1}{24}x^4-\frac{1}{240}x^6...)

Where A and B are arbitrary constants.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS