Question #264668

Using ∈-δ arguments, prove that


Lim (x^3+1) = 9/8


x→1/2

1
Expert's answer
2021-11-23T13:25:50-0500

Given ϵ\epsilon > 0, we have to find δ>0\delta>0 such that

if 0<x12<δ0< |x-\frac{1}{2}|< \delta then | x³+198-\frac{9}{8}| |<ϵ\epsilon

Now | x³+1 98=x318-\frac{9}{8}|| = |x³-\frac{1}{8}|

= |(x 12)(x2+12x+14)-\frac{1}{2})(x²+\frac{1}{2}x+\frac{1}{4})|

If |x12<12-\frac{1}{2}|<\frac{1}{2} that means 12<x12<12-\frac{1}{2} <x-\frac{1}{2} < \frac{1}{2} then

0 < x < 1 <=> x2+12x+14<12+12+14=74x²+\frac{1}{2}x +\frac{1}{4} < 1²+ \frac{1}{2} +\frac{1}{4}= \frac{7}{4}

Therefore |x³+198=x12-\frac{9}{8}| = |x- \frac{1}{2}| (x²+12)(x2+12x+14)<74x12-\frac{1}{2})(x²+\frac{1}{2}x+\frac{1}{4})< \frac{7}{4}|x-\frac{1}{2}|

Let us choose δ=\delta = min { 12,4ϵ7\frac{1}{2} , \frac{4\epsilon}{7} }

then 0<x12<δ0< |x-\frac{1}{2}|< \delta => |x³+198<4ϵ7.74=ϵ-\frac{9}{8}|| < \frac{4\epsilon}{7}.\frac{7}{4}=\epsilon

Thus by the δϵ\delta-\epsilon method

limx>12(x3+1)=98lim_{x->\frac{1}{2}}(x³+1) = \frac{9}{8}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS