The second mean value theorem of integrability states that if the integral of a(x) and b(x) are continuous on [f,g] and b(x)≥ 0 then,
∫fga(x)b(x)dx=a(f)∫fhb(x)dx+a(g)∫hgb(x)dx
Given:
f(x)=a(x)=6x
g(x)=b(x)=-5x
Where [f,g]=[3,4]
∫34(6x)(−5x)dx=6(3)∫3h−5xdx+6(4)∫h4−5xdx
⟹∫34−30x2dx=18∫3h(−5)dx+24∫h4(−5x)dx
⟹−30(3x3)34=−90(2x2)3h+−20(2x2)h4
⟹−30(364−27)=−90(2h2−9)−120(216−h2)
⟹−370=−45(h2−9)−60(16−h2)
⟹−370=−45h2+405−960+60h2
⟹−370+960−405=15h2
185=15h2
h2=12.33
⟹h=3.511
as it defines the function
Comments