Question #264628

1. Show that the function f(x)= | cos 2x| is a periodic function



2. Find the local extreme value of (1/x)^x , if it exists.

1
Expert's answer
2021-11-15T19:50:22-0500

1)

Consider the graph of f(x)=cos 2x below



From which the graph of f(x)=|cos 2x| is



Hence, as shown in the figure above the function f(x)=|cos 2x| is a periodic function with period π2\frac{π}{2}

2)

Given f(x)=(1x)x(\frac{1}{x})^x ,x>0

ln(f(x))=ln((1x)x)ln(f(x))=ln((\frac{1}{x})^x)

ln(f(x))=xln(1x)ln(f(x))=xln(\frac{1}{x})

ln(f(x))=xln(1x)ln(f(x))=-xln(\frac{1}{x})

Differentiate to get;

1f(x)f(x)=(x1x+ln x)\frac{1}{f(x)}\cdot f'(x)=-(x\cdot\frac{1}{x}+ln\ x)

    f(x)=(1x)x(1+ln x)\implies f'(x)=-(\frac{1}{x})^x(1+ln\ x)

For critical points f'(x)=0

    (1x)x(1+ln x)=0\implies -(\frac{1}{x})^x(1+ln\ x)=0

ln x=-1

x=e1x=e^{-1}

Hence local maximum exists and occurs at x=e1x=e^{-1}

Value f(e1)=(1e1)e1f(e^{-1})=(\frac{1}{e^{-1}})^{e^{-1}}

=ee1e^{e^{-1}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS