1)
Consider the graph of f(x)=cos 2x below
From which the graph of f(x)=|cos 2x| is
Hence, as shown in the figure above the function f(x)=|cos 2x| is a periodic function with period 2π
2)
Given f(x)=(x1)x ,x>0
ln(f(x))=ln((x1)x)
ln(f(x))=xln(x1)
ln(f(x))=−xln(x1)
Differentiate to get;
f(x)1⋅f′(x)=−(x⋅x1+ln x)
⟹f′(x)=−(x1)x(1+ln x)
For critical points f'(x)=0
⟹−(x1)x(1+ln x)=0
ln x=-1
x=e−1
Hence local maximum exists and occurs at x=e−1
Value f(e−1)=(e−11)e−1
=ee−1
Comments