Question #264590

Test the following series for convergence


2.3/(4^2.5^2)+ 4.5/6^2.7^2) + 6.7/ (8^2.9^2) ..+.......

1
Expert's answer
2021-11-14T18:11:31-0500

Let us test the series n=12n(2n+1)(2n+2)2(2n+3)2\sum\limits_{n=1}^{\infty}\frac{2n(2n+1)}{(2n+2)^2(2n+3)^2} for convergence. Let us consider the series n=11n2.\sum\limits_{n=1}^{\infty}\frac{1}{n^2}.

Since limn2n(2n+1)(2n+2)2(2n+3)21n2=limn2n3(2n+1)(2n+2)2(2n+3)2=limn4+2n(2+2n)2(2+3n)2=42222=14,\lim\limits_{n\to\infty}\frac{\frac{2n(2n+1)}{(2n+2)^2(2n+3)^2}}{\frac{1}{n^2}} =\lim\limits_{n\to\infty}\frac{2n^3(2n+1)}{(2n+2)^2(2n+3)^2} =\lim\limits_{n\to\infty}\frac{4+\frac{2}{n}}{(2+\frac{2}n)^2(2+\frac{3}n)^2} =\frac{4}{2^22^2}=\frac{1}4,

we conclude that the series n=12n(2n+1)(2n+2)2(2n+3)2\sum\limits_{n=1}^{\infty}\frac{2n(2n+1)}{(2n+2)^2(2n+3)^2} is equivalent to the series n=11n2\sum\limits_{n=1}^{\infty}\frac{1}{n^2}. Since the ss-series n=11ns\sum\limits_{n=1}^{\infty}\frac{1}{n^s} is covergent for s>1,s>1, we conclude that the series n=12n(2n+1)(2n+2)2(2n+3)2\sum\limits_{n=1}^{\infty}\frac{2n(2n+1)}{(2n+2)^2(2n+3)^2} is covergent as well.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS