∫e−x2x2 dx= ∫x2e−x2 dx
Using Integration by parts
=−2xe−x2−∫−2e−x2 dx ...(1)
Now solving:
∫−2e−x2 dx
Apply linearity:
=−4π∫π2e−x2dx=−4πerf(x)
Put the above value in eqn .(1)
−2xe−x2−∫−2e−x2 dx=4πerf(x)−2xe−x2+C
So, ∫x2e−x2 dx=4πerf(x)−2xe−x2+C
And ∫0∞x2e−x2 dx=[4πerf(x)−2xe−x2+C]0∞=4π
Comments