Question #263788

Prove ∫0 𝑒 −𝑥 2 𝑥 2 𝑑𝑥 = √𝜋/ 4


1
Expert's answer
2021-11-10T17:11:40-0500

 

ex2x2 dx=\int \mathrm{e}^{-x^{2}}x^{2} \mathrm{~d} x= x2ex2 dx\int x^{2} \mathrm{e}^{-x^{2}} \mathrm{~d} x

Using Integration by parts

 =xex22ex22 dx=-\frac{x \mathrm{e}^{-x^{2}}}{2}-\int-\frac{\mathrm{e}^{-x^{2}}}{2} \mathrm{~d} x ...(1)

Now solving:

ex22 dx\int-\frac{\mathrm{e}^{-x^{2}}}{2} \mathrm{~d} x

Apply linearity:

 =π42ex2πdx=πerf(x)4\begin{aligned} &=-\frac{\sqrt{\pi}}{4} \int \frac{2 \mathrm{e}^{-x^{2}}}{\sqrt{\pi}} \mathrm{d} x \\ &=-\frac{\sqrt{\pi} \operatorname{erf}(x)}{4} \end{aligned}

Put the above value in eqn .(1)

 xex22ex22 dx=πerf(x)4xex22+C\begin{aligned} &-\frac{x \mathrm{e}^{-x^{2}}}{2}-\int-\frac{\mathrm{e}^{-x^{2}}}{2} \mathrm{~d} x \\ &=\frac{\sqrt{\pi} \operatorname{erf}(x)}{4}-\frac{x \mathrm{e}^{-x^{2}}}{2}+C \end{aligned}

So, x2ex2 dx=πerf(x)4xex22+C\int x^{2} \mathrm{e}^{-x^{2}} \mathrm{~d} x=\frac{\sqrt{\pi} \operatorname{erf}(x)}{4}-\frac{x \mathrm{e}^{-x^{2}}}{2}+C

And 0x2ex2 dx=[πerf(x)4xex22+C]0=π4\int_{0}^{\infty} x^{2} \mathrm{e}^{-x^{2}} \mathrm{~d} x=[\frac{\sqrt{\pi} \operatorname{erf}(x)}{4}-\frac{x \mathrm{e}^{-x^{2}}}{2}+C]_{0}^{\infty}=\frac{\sqrt{\pi}}{4}

 


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS