Question #260597

Show that ∫10 (sin(1/x))/xn 𝑑𝑥 ; 𝑥 > 0 convergence absolutely, if 𝑛 < 1.


1
Expert's answer
2021-11-04T09:14:49-0400

We want to show that,

01(sin(1/x))xndx,x>0 converges \int_{0}^{1} \frac{(\sin (1 / x))}{x^{n}} d x, x>0 \text { converges }

Absolutely if n<1n<1

Let, f(x)=sin(1/x)xn,n>0f(x)=\frac{\sin (1 / x)}{x^{n}}, n>0

0 is the only point of infinite discontinuity and f does net keep the same sign in the interval [0,1].

f(x)&=sin(1x)xn<1xn\therefore \quad|f(x)| \&=\frac{\left|\sin \left(\frac{1}{x}\right)\right|}{x^{n}}<\frac{1}{x^{n}}

Also, 011xndx\int_{0}^{1} \frac{1}{x^{n}} d x converges when n<1n <1 .

Thus, 01sin(1/x)xndx\int_{0}^{1}\left|\frac{\sin (1 / x)}{x^{n}}\right| d x converges if and only ifn>0\quad n>0

Thus, The Integration 01sin(1/x)xndx\int_{0}^{1}\left|\frac{\sin (1 / x)}{x^{* n}}\right| d x converges if and only if n<1n<1

Or 01sin(1/x)xndx\int_{0}^{1} \frac{\sin (1 / x)}{x^{n}} d x converges absolutely if n<1n<1.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS