We want to show that,
∫ 0 1 ( sin ( 1 / x ) ) x n d x , x > 0 converges \int_{0}^{1} \frac{(\sin (1 / x))}{x^{n}} d x, x>0 \text { converges } ∫ 0 1 x n ( s i n ( 1/ x )) d x , x > 0 converges
Absolutely if n < 1 n<1 n < 1
Let, f ( x ) = sin ( 1 / x ) x n , n > 0 f(x)=\frac{\sin (1 / x)}{x^{n}}, n>0 f ( x ) = x n s i n ( 1/ x ) , n > 0
0 is the only point of infinite discontinuity and f does net keep the same sign in the interval [0,1].
∴ ∣ f ( x ) ∣ & = ∣ sin ( 1 x ) ∣ x n < 1 x n \therefore \quad|f(x)| \&=\frac{\left|\sin \left(\frac{1}{x}\right)\right|}{x^{n}}<\frac{1}{x^{n}} ∴ ∣ f ( x ) ∣& = x n ∣ s i n ( x 1 ) ∣ < x n 1
Also, ∫ 0 1 1 x n d x \int_{0}^{1} \frac{1}{x^{n}} d x ∫ 0 1 x n 1 d x converges when n < 1 n <1 n < 1 .
Thus, ∫ 0 1 ∣ sin ( 1 / x ) x n ∣ d x \int_{0}^{1}\left|\frac{\sin (1 / x)}{x^{n}}\right| d x ∫ 0 1 ∣ ∣ x n s i n ( 1/ x ) ∣ ∣ d x converges if and only ifn > 0 \quad n>0 n > 0
Thus, The Integration ∫ 0 1 ∣ sin ( 1 / x ) x ∗ n ∣ d x \int_{0}^{1}\left|\frac{\sin (1 / x)}{x^{* n}}\right| d x ∫ 0 1 ∣ ∣ x ∗ n s i n ( 1/ x ) ∣ ∣ d x converges if and only if n < 1 n<1 n < 1
Or ∫ 0 1 sin ( 1 / x ) x n d x \int_{0}^{1} \frac{\sin (1 / x)}{x^{n}} d x ∫ 0 1 x n s i n ( 1/ x ) d x converges absolutely if n < 1 n<1 n < 1 .
Comments