Question #255483

Use the Taylor series to find the values of ln 0.4 accurate to 10-3 . Use the integral remainder.


1
Expert's answer
2021-10-26T16:47:33-0400

We use f(x)=ln(1+x);

Taylor formula:

f(x)=f(a)+f(1)(a)(xa)11!+...+f(n)(a)(xa)nn!+1n!ax(xt)nf(n+1)(t)dtf(x)=f(a)+f^{(1)}(a)\cdot \frac{(x-a)^1}{1!}+...+f^{(n)}(a)\cdot \frac{(x-a)^n}{n!}+\frac{1}{n!}\int_a^x(x-t)^n\cdot f^{(n+1)}(t)dt

We take a=1,dx=x-a=-0.6

f(a)=ln(1)=0

f(1)(x)=1x,f(1)(1)=1;f(2)(x)=1x2,f(2)(1)=1;f(3)(x)=2!x3,f(3)(1)=2!;,,,,,,,,,f(n)(x)=(1)n1(n1)!xn,f(n)(1)(0.41)nn!=0.6nn!;f^{(1)}(x)=\frac{1}{x},f^{(1)}(1)=1;\\ f^{(2)}(x)=-\frac{1}{x^2},f^{(2)}(1)=-1;\\ f^{(3)}(x)=\frac{2!}{x^3},f^{(3)}(1)=2!;\\ ,,,,,,,,,\\ f^{(n)}(x)=(-1)^{n-1}\frac{(n-1)!}{x^n}, \frac{f^{(n)}(1)(0.4-1)^n}{n!}=-\frac{0.6^n}{n!};\\

f(n+1)(t)=(1)nn!tn+1f^{(n+1)}(t)=(-1)^n\frac{n!}{t^{n+1}}

f(x)=0.60.622...0.6nn+(1)nn!n!1x(0.4t)ntn+1dt=0.60.622...0.6nn+(1)n10.4(0.4t1)n1tdtf(x)=-0.6-\frac{0.6^2}{2}-...-\frac{0.6^n}{n}+(-1)^{n}\frac{n!}{n!}\int_1^{x}\frac{(0.4-t)^n}{t^{n+1}}dt=\\ -0.6-\frac{0.6^2}{2}-...-\frac{0.6^n}{n}+(-1)^{n}\int_1^{0.4}\left( \frac{0.4}{t}-1\right)^n\frac{1}{t}dt

(10.4tn1t(10.41)n10.4=0.6n10.4, t(0.4,1)|(1-\frac{0.4}{t}|^n\cdot {1}{|t|}\le(1-\frac{0.4}{1})^n\cdot \frac{1}{0.4}=0.6^n\frac{1}{0.4},\space t\in(0.4,1)

(1)n10.4(0.4t1)n1tdt0.6n0.4110.4=0.6n+10.4<0.001|(-1)^{n}\int_1^{0.4}\left( \frac{0.4}{t}-1\right)^n\frac{1}{t}dt|\le 0.6^n\cdot |0.4-1|\cdot \frac{1}{0.4}=\frac{0.6^{n+1}}{0.4}<0.001

0.614/0.4>0.001, 0.615/0.4<0.001n=14;ln(0.4)=0.60.6220.6330.6440.6550.6680.6770.6880.6990.610100.611110.612120.613130.61414=0.9160.6^{14}/0.4>0.001,\space 0.6^{15}/0.4<0.001\\ n=14;\\ ln(0.4)=-0.6-\frac{0.6^2}{2}-\frac{0.6^3}{3}-\frac{0.6^4}{4}-\frac{0.6^5}{5}-\frac{0.6^6}{8}-\frac{0.6^7}{7}-\frac{0.6^8}{8}- \\ -\frac{0.6^9}{9}-\frac{0.6^{10}}{10}-\frac{0.6^{11}}{11}-\frac{0.6^{12}}{12}-\frac{0.6^{13}}{13}-\frac{0.6^{14}}{14}-=-0.916

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS