We use f(x)=ln(1+x);
Taylor formula:
f(x)=f(a)+f(1)(a)⋅1!(x−a)1+...+f(n)(a)⋅n!(x−a)n+n!1∫ax(x−t)n⋅f(n+1)(t)dt
We take a=1,dx=x-a=-0.6
f(a)=ln(1)=0
f(1)(x)=x1,f(1)(1)=1;f(2)(x)=−x21,f(2)(1)=−1;f(3)(x)=x32!,f(3)(1)=2!;,,,,,,,,,f(n)(x)=(−1)n−1xn(n−1)!,n!f(n)(1)(0.4−1)n=−n!0.6n;
f(n+1)(t)=(−1)ntn+1n!
f(x)=−0.6−20.62−...−n0.6n+(−1)nn!n!∫1xtn+1(0.4−t)ndt=−0.6−20.62−...−n0.6n+(−1)n∫10.4(t0.4−1)nt1dt
∣(1−t0.4∣n⋅1∣t∣≤(1−10.4)n⋅0.41=0.6n0.41, t∈(0.4,1)
∣(−1)n∫10.4(t0.4−1)nt1dt∣≤0.6n⋅∣0.4−1∣⋅0.41=0.40.6n+1<0.001
0.614/0.4>0.001, 0.615/0.4<0.001n=14;ln(0.4)=−0.6−20.62−30.63−40.64−50.65−80.66−70.67−80.68−−90.69−100.610−110.611−120.612−130.613−140.614−=−0.916
Comments