Show using an example 𝑓 and 𝑔 are not integrable on [𝑎, 𝑏], but 𝑓𝑔 may be integrable on [𝑎, 𝑏].
Take the two modified Dirichlet function δ1(x)\delta_1(x)δ1(x) and δ2(x)=δ1(x)\delta_2(x)=\delta_1(x)δ2(x)=δ1(x), where
δ1(x)={1, x∈R∖Q−1, x∈Q\delta_1(x)=\begin{cases} 1,\ x\in\mathbb{R}\setminus\mathbb{Q}\\ -1,\ x\in\mathbb{Q}\end{cases}δ1(x)={1, x∈R∖Q−1, x∈Q
By Darboux criteria they are not integrable on [0,1][0,1][0,1] , but δ1δ2≡1\delta_1\delta_2\equiv 1δ1δ2≡1 is integrable on [0,1][0,1][0,1]
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments