Question #255286

Use the Taylor series to find the values of ln 1.4 accurate to 10-3 . Use the integral remainder.


1
Expert's answer
2021-10-25T16:56:25-0400
ln(1+x)=xx22+x33x44+...\ln(1+x)=x-\dfrac{x^2}{2}+\dfrac{x^3}{3}-\dfrac{x^4}{4}+...

=n=1(1)n+1xnn,1<x1=\displaystyle\sum_{n=1}^{\infin}\dfrac{(-1)^{n+1}x^n}{n}, -1<x\leq 1

ln(1.4)=ln(1+0.4)\ln(1.4)=\ln(1+0.4)

0.4nn0.001\dfrac{0.4^n}{n}\leq0.001

0.455=0.002048>0.001\dfrac{0.4^5}{5}=0.002048>0.001

0.4660.000683<0.001\dfrac{0.4^6}{6}\approx0.000683<0.001

ln(1.4)0.40.422+0.4330.444+0.4550.466\ln(1.4)\approx0.4-\dfrac{0.4^2}{2}+\dfrac{0.4^3}{3}-\dfrac{0.4^4}{4}+\dfrac{0.4^5}{5}-\dfrac{0.4^6}{6}

0.336\approx0.336


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS