Question #252511

lim š‘„ā†’0+ (sin š‘„) ^x


1
Expert's answer
2021-10-18T15:12:37-0400

lim⁔x→ 0+sinxx=lim⁔x→ 0+eln(sinx)\lim_{x\to\ 0^+} sin^x x= \lim_{x\to\ 0^+} e^{ln(sin^x )}

Also,

lim⁔x→ 0+eln(sinxx)=lim⁔x→ 0+exln(sinx)\lim_{x\to\ 0^+} e^{ln(sin^x x)}= \lim_{x\to\ 0^+} e^{xln(sinx)}

On rearranging we get:


lim⁔x→ 0+exln(sinx)=elim⁔x→ 0+ln(sinx)1/x\lim_{x\to\ 0^+} e^{xln(sin^x )}= e^{\lim_{x\to\ 0^+} \cfrac{ln(sinx)}{1/x}}


Applying L’ hospital we get :

elim⁔x→ 0+ln(sinx)1/x=elim⁔x→ 0+āˆ’x2cosxsinxe^{\lim_{x\to\ 0^+} \cfrac{ln(sinx)}{1/x}}= e^{\lim_{x\to\ 0^+} \cfrac{-x^2 cosx}{sinx}}


on further rearranging we get:


elim⁔x→ 0+āˆ’x2cosxsinx=elim⁔x→ 0+āˆ’x cosxsinxxe^{\lim_{x\to\ 0^+} \cfrac{-x^2 cosx}{sinx}} = e^{\lim_{x\to\ 0^+} \cfrac{-x\ cosx}{\cfrac{sinx}{x}}}


As ,

lim⁔x→ 0+sinxx=1\lim_{x\to\ 0^+} \cfrac{sinx}{x}=1

Also

lim⁔x→ 0+x cosx=0\lim_{x\to\ 0^+} x\ cosx =0


And hence ,


elim⁔x→ 0+āˆ’x cosxsinxx=e0=1e^{\lim_{x\to\ 0^+} \cfrac{-x\ cosx}{\cfrac{sinx}{x}}} = e^{0} =1


hence,


lim⁔x→ 0+sinxx=1\lim_{x\to\ 0^+} sin^x x=1





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS