Solution:
limn→∞1n[sinπn+sin2πn+…+sin(n−1)πn]=limn→∞{1n∑r=1n−1sin(rπn)}=∫01sinπxdx=[−cosπxπ]01\begin{aligned} &\lim _{n \rightarrow \infty} \frac{1}{n}\left[\sin \frac{\pi}{n}+\sin \frac{2 \pi}{n}+\ldots+\sin \frac{(n-1) \pi}{n}\right] \\ &\quad=\lim _{n \rightarrow \infty}\left\{\frac{1}{n} \sum_{r=1}^{n-1} \sin \left(\frac{r \pi}{n}\right)\right\}= \int_{0}^{1} \sin \pi x d x \\ &\quad=\left[\frac{-\cos \pi x}{\pi}\right]_{0}^{1} \end{aligned}n→∞limn1[sinnπ+sinn2π+…+sinn(n−1)π]=n→∞lim{n1r=1∑n−1sin(nrπ)}=∫01sinπxdx=[π−cosπx]01
=1π[−cosπ+cos0]=1π[1+1]=2π=\dfrac1{\pi}[-\cos \pi+\cos 0] \\=\dfrac1{\pi}[1+1] \\=\dfrac2{\pi}=π1[−cosπ+cos0]=π1[1+1]=π2
Hence, proved.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments