The function f(x)=x2sin8(ex) is continuous on [−2π,2π]. Then
∣∫−2π2πx2sin8(ex)dx∣≤∫−2π2π∣x2sin8(ex)∣dx
0≤∣sin8(ex)∣≤1=>∣x2sin8(ex)∣≤x2,x∈R Then
∫−2π2π∣x2sin8(ex)∣dx≤∫−2π2πx2dx
∫−2π2πx2dx=[3x3]2π−2π=316π3 Therefore
∣∫−2π2πx2sin8(ex)dx∣≤∫−2π2π∣x2sin8(ex)∣dx
≤∫−2π2πx2dx=316π3 Therefore
∣∫−2π2πx2sin8(ex)dx∣≤316π3
Comments