Question #242622

Show that |2𝜋-2𝜋x2sin8 (𝑒 𝑥 ) 𝑑𝑥| ≤ 16𝜋 3/ 3 .

1
Expert's answer
2021-09-28T14:38:58-0400

The function f(x)=x2sin8(ex)f(x)=x^2\sin^8(e^x) is continuous on [2π,2π].[-2\pi, 2\pi]. Then


2π2πx2sin8(ex)dx2π2πx2sin8(ex)dx|\displaystyle\int_{-2\pi}^{2\pi}x^2\sin^8(e^x)dx|\leq\displaystyle\int_{-2\pi}^{2\pi}|x^2\sin^8(e^x)|dx

0sin8(ex)1=>x2sin8(ex)x2,xR0\leq|sin^8(e^x)|\leq1=>|x^2\sin^8(e^x)|\leq x^2, x\in\R

Then


2π2πx2sin8(ex)dx2π2πx2dx\displaystyle\int_{-2\pi}^{2\pi}|x^2\sin^8(e^x)|dx\leq\displaystyle\int_{-2\pi}^{2\pi}x^2dx

2π2πx2dx=[x33]2π2π=16π33\displaystyle\int_{-2\pi}^{2\pi}x^2dx=[\dfrac{x^3}{3}]\begin{matrix} 2\pi \\ -2\pi \end{matrix}=\dfrac{16\pi^3}{3}

Therefore


2π2πx2sin8(ex)dx2π2πx2sin8(ex)dx|\displaystyle\int_{-2\pi}^{2\pi}x^2\sin^8(e^x)dx|\leq\displaystyle\int_{-2\pi}^{2\pi}|x^2\sin^8(e^x)|dx

2π2πx2dx=16π33\leq\displaystyle\int_{-2\pi}^{2\pi}x^2dx=\dfrac{16\pi^3}{3}

Therefore


2π2πx2sin8(ex)dx16π33|\displaystyle\int_{-2\pi}^{2\pi}x^2\sin^8(e^x)dx|\leq\dfrac{16\pi^3}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS