Question #217524

 Consider any two positive real numbers and call it π‘Ž and 𝑏. Then consider the function defined as  

𝑓(π‘₯) = {

π‘Ž, 0 ≀ π‘₯ < 1 𝑏,          π‘₯ = 1 Find the π‘ˆ(𝑃,𝑓) and 𝐿(𝑃,𝑓) for the partition 𝑃 = {π‘₯0,π‘₯1,…π‘₯𝑛} of [0,1]. Also check whether the function is Riemann integrable over [0,1] or not. 


1
Expert's answer
2021-07-16T16:04:35-0400

Let P={0,1n,2n,...,rβˆ’1n,rn...,nn=1}Let \space P=\{0, \frac{1}{n},\frac{2}{n},...,\frac{r-1}{n}, \frac{r}{n}...,\frac{n}{n}=1\} be any partition of [0,1]

The rth sub interval of [0,1] =Ir=[rβˆ’1n,rn];r=1,2,...n= I_r=[\frac{r-1}{n},\frac{r}{n}] ; r= 1,2,...n

If Ξ΄r\delta_r be the length of Ir then, Ξ΄=rnβˆ’rβˆ’1n=1n\delta = \frac{r}{n}- \frac{r-1}{n}= \frac{1}{n}

Let Mr and mr be respectively the supremum and the infimum of f in Ir . Since f is increasing on [0,1] we have

Mr=supf(x)=r3n3mr=inff(x)=(rβˆ’1)3n3U(f,p)=βˆ‘r=1nMrdr=βˆ‘r=1nr3n31n=14(1+1n)2L(f,p)=βˆ‘r=1nmrdr=βˆ‘r=1n(rβˆ’1)3n31n=14(1βˆ’1n)2M_r = supf(x) =\frac{r^3}{n^3}\\ m_r = inff(x) =\frac{(r-1)^3}{n^3}\\ U(f,p)= \sum^n_{r=1}M_rdr=\sum_{r=1}^n \frac{r^3}{n^3}\frac{1}{n}=\frac{1}{4}(1+\frac{1}{n})^2\\ L(f,p)= \sum^n_{r=1}m_rdr=\sum_{r=1}^n \frac{(r-1)^3}{n^3}\frac{1}{n}=\frac{1}{4}(1-\frac{1}{n})^2


∫abΛ‰f(x)dx=Limnβ†’βˆžU(f,p)=Limnβ†’βˆž14(1+1n)2=14∫aΛ‰bf(x)dx=Limnβ†’βˆžL(f,p)=Limnβ†’βˆž14(1βˆ’1n)2=14∫abΛ‰f(x)dx=∫aΛ‰bf(x)dx\int_a^{\bar{b}}f(x)dx = Lim_{n\to \infin} U(f,p)= Lim_{n\to \infin} \frac{1}{4}(1+\frac{1}{n})^2=\frac{1}{4}\\ \int_{\bar{a}}^bf(x)dx = Lim_{n\to \infin} L(f,p)= Lim_{n\to \infin} \frac{1}{4}(1-\frac{1}{n})^2=\frac{1}{4}\\ \int_a^{\bar{b}}f(x)dx=\int_{\bar{a}}^bf(x)dx

Hence the function is Riemann integrable over [0,1]

∫01f(x)dx=14\int_0^1 f(x)dx =\frac{1}{4}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS