Let P={0,n1β,n2β,...,nrβ1β,nrβ...,nnβ=1} be any partition of [0,1]
The rth sub interval of [0,1] =Irβ=[nrβ1β,nrβ];r=1,2,...n
If Ξ΄rβ be the length of Ir then, Ξ΄=nrββnrβ1β=n1β
Let Mr and mr be respectively the supremum and the infimum of f in Ir . Since f is increasing on [0,1] we have
Mrβ=supf(x)=n3r3βmrβ=inff(x)=n3(rβ1)3βU(f,p)=βr=1nβMrβdr=βr=1nβn3r3βn1β=41β(1+n1β)2L(f,p)=βr=1nβmrβdr=βr=1nβn3(rβ1)3βn1β=41β(1βn1β)2
β«abΛβf(x)dx=LimnβββU(f,p)=Limnβββ41β(1+n1β)2=41ββ«aΛbβf(x)dx=LimnβββL(f,p)=Limnβββ41β(1βn1β)2=41ββ«abΛβf(x)dx=β«aΛbβf(x)dx
Hence the function is Riemann integrable over [0,1]
β«01βf(x)dx=41β
Comments