Question #217184

Let a,b,x be three real numbers with a>b and x>0. Which of the following statements is correct?

A. Xa>Xb if a,b>1 and for every x>0

B. Xa<Xb if X is an element of (0,1)

C.Xa<Xb if a, b>0 and for every x>1

D.Xa>Xb if a,b x>0


1
Expert's answer
2021-07-19T05:53:12-0400

A.

xa>xb,a>b>1,x>0x^a>x^b, a>b>1,x>0

 False.

Counterexample


x=12>0,a=3>1,b=2>1,3>2x=\dfrac{1}{2}>0, a=3>1, b=2>1, 3>2

xa=(12)3=18,xb=(12)2=14x^a=(\dfrac{1}{2})^3=\dfrac{1}{8}, x^b=(\dfrac{1}{2})^2=\dfrac{1}{4}


18<14=>xa<xb\dfrac{1}{8}<\dfrac{1}{4}=>x^a<x^b



B.

xa<xb,a>b,0<x<1x^a<x^b, a>b,0<x<1

 True.

The function f(t)=xtf(t)=x^t is decreasing, if 0<x<1.0<x<1. Then


xa<xb,if a>bx^a<x^b, \text{if }a>b

C.

xa<xb,a>b>0,x>1x^a<x^b, a>b>0,x>1

 False.

Counterexample


x=2>1,a=3>0,b=2>0,2>1x=2>1, a=3>0, b=2>0, 2>1

xa=(2)3=8,xb=(2)2=4x^a=(2)^3=8, x^b=(2)^2=48>4=>xa>xb8>4=>x^a>x^b


D.

xa>xb,a>b>0,x>0x^a>x^b, a>b>0,x>0

 False.

Counterexample


x=12>0,a=3>0,b=2>0,3>2x=\dfrac{1}{2}>0, a=3>0, b=2>0, 3>2

xa=(12)3=18,xb=(12)2=14x^a=(\dfrac{1}{2})^3=\dfrac{1}{8}, x^b=(\dfrac{1}{2})^2=\dfrac{1}{4}


18<14=>xa<xb\dfrac{1}{8}<\dfrac{1}{4}=>x^a<x^b


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS