Question #217040

For x and y in R, let d(x,y)=(|x-y|)/(1+|x-y|),prove that d defines a.bounded metric on R


1
Expert's answer
2021-07-26T14:22:45-0400

1)

Positivity: d(x,y)0d(x,y)\ge0 with equality if x=y


2)

Symmetry: d(x,y)=d(y,x)d(x,y)=d(y,x)

xy1+xy=yx1+yx\frac{|x-y|}{1+|x-y|}=\frac{|y-x|}{1+|y-x|}


3)

Triangle Inequality: d(x,y)d(x,z)+d(z,y)d(x,y)\le d(x,z)+d(z,y)

d(x,y)=xy1+xy=(xz)+(zy)1+(xz)+(zy)(xz)+(zy)1+(xz)+(zy)=d(x,z)+d(z,y)d(x,y)=\frac{|x-y|}{1+|x-y|}=\frac{|(x-z)+(z-y)|}{1+|(x-z)+(z-y)|}\le \frac{|(x-z)+(z-y)|}{1+|(x-z)+(z-y)|}=d(x,z)+d(z,y)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS