L(P,f)=∑i=14miΔxiU(−P,f)=∑i=14MiΔximi=infimum[f(x):xi−1≤x≤xi]Mi=inprenum[f(x):xi−1≤x≤xi]f(1)=−1f(2)=2f(3)=7f(4)=14f(5)=23Hence,m1=−1,m2=2,m3=7,m4=14M1=2,M2=7,M3=14,M4=23Δxi=1L(P,f)=−1+2+7+14=22U(−P,f)=2+7+14+23=46L(P,f)≤U(−P,f)L(P,f)= \sum^4_{i=1}m_i \Delta x_i\\ U(-P,f)=\sum^4_{i=1}M_i \Delta x_i\\ m_i=infimum[f(x):x_{i-1}≤x≤x_i]\\ M_i=inprenum[f(x):x_{i-1}≤x≤x_i]\\ f(1)=-1 \\ f(2)=2 \\ f(3)=7\\ f(4)=14 \\ f(5)=23 \\ Hence, m_1=-1, m_2=2, m_3=7, m_4=14\\ M_1=2, M_2=7, M_3=14, M_4=23\\ \Delta x_i=1\\ L(P,f)=-1+2+7+14=22\\ U(-P,f)=2+7+14+23=46\\ L(P,f)≤U(-P,f)\\L(P,f)=∑i=14miΔxiU(−P,f)=∑i=14MiΔximi=infimum[f(x):xi−1≤x≤xi]Mi=inprenum[f(x):xi−1≤x≤xi]f(1)=−1f(2)=2f(3)=7f(4)=14f(5)=23Hence,m1=−1,m2=2,m3=7,m4=14M1=2,M2=7,M3=14,M4=23Δxi=1L(P,f)=−1+2+7+14=22U(−P,f)=2+7+14+23=46L(P,f)≤U(−P,f)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments