Question #210797

Show that the series Σ x/(1+n^2.x^2) is uniformly convergent using Weierstrass m test


1
Expert's answer
2021-07-16T13:41:25-0400

Since for each nNn\in N and x[1,α]x\in \left[ 1,\alpha \right] , we have 1+n2x2n2 , xα1+{ n }^{ 2 }{ x }^{ 2 }\ge { n }^{ 2 }\ ,\ x\le \alpha ,then


0x1+n2x2αn20\le \frac { x }{ 1+{ n }^{ 2 }{ x }^{ 2 } } \le \frac { \alpha }{ { n }^{ 2 } }

 .

Setting fn(x)=x1+n2x2, Mn=αn2{ f }_{ n }(x)=\frac { x }{ 1+{ n }^{ 2 }{ x }^{ 2 } } ,\ { M }_{ n }=\frac { \alpha }{ { n }^{ 2 } } we have for each nNn\in N and x[1,α]x\in \left[ 1,\alpha \right] : 


fn(x)=fn(x)Mn\left| { f }_{ n }(x) \right| ={ f }_{ n }(x)\le { M }_{ n } . The series n=1Mn =αn=11n2\sum _{ n=1 }^{ \infty }{ { M }_{ n }\ } =\alpha \sum _{ n=1 }^{ \infty }{ \frac { 1 }{ { n }^{ 2 } } } converges, because the series 



n=11n2\sum _{ n=1 }^{ \infty }{ \frac { 1 }{ { n }^{ 2 } } } is p-series (p=2). By the Weierstrass M-Test , the series


n=1fn(x)=n=1x1+n2x2\sum _{ n=1 }^{ \infty }{ { f }_{ n }(x)= } \sum _{ n=1 }^{ \infty }{ \frac { x }{ 1+{ n }^{ 2 }{ x }^{ 2 } } }


converges uniformly in [1,α]\left[ 1,\alpha \right] .



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS