1) We aim to find U(P1,f)
P1={[0,21][21,32][32,1]}
The function f, as defined is decreasing for each subinterval of [0,1], thus the supremum of f, is the value of f at the left end point of each subinterval.
Define
Mi=sup{f(x):x∈[xi−1,xi]}
And
δxi=xi−xi−1 for each i∈N
M1=f(0)=1
M2=f(21)=43
M3=f(32)=95
δx1=21
δx2=61
δx3=31
U(P1,f)=M1δx1+M2δx2+M3δx3=21+81+275=216175
2) We aim to find L(P2,f)
P2={[0,41][41,21][21,43][43,1]}
The function f, as defined is decreasing for each subinterval of [0,1], thus the infimum of f, is the v alue of f at the right end point of each subinterval
Define,
mi=inf{f(x):x∈[xi−1,xi]}
m1=f(41)=1615
m2=f(21)=43
m3=f(43)=167
m4=f(1)=0
δxi=41 for each i
L(P2,f)=m1δx1+m2δx2+m3δx3+m4δx4=6415+163+647+0=3217
Comments