Question #210044

Let f: [0,1] to R ne a function defined by

f(x)= 1-x^2

Let P1= { 0,1/2,2/3,1}

P2= { 0,1/4,1/2,3/4,1}

be two partition of the interval [0,1]. Calculate L(P2,f) and U(,P1,f)


1
Expert's answer
2021-06-24T11:39:50-0400

1) We aim to find U(P1,f)U(P_1,f)

P1={[0,12][12,23][23,1]}P_1 = \{[0, \frac{1}{2}][ \frac{1}{2}, \frac{2}{3} ][ \frac{2}{3},1 ] \}

The function f, as defined is decreasing for each subinterval of [0,1], thus the supremum of f, is the value of f at the left end point of each subinterval.

Define

Mi=sup{f(x):x[xi1,xi]}M_i = sup \{ f(x): x \in [x_{i-1}, x_i] \}

And

δxi=xixi1\delta x_i = x_i - x_{i-1} for each iNi \in \mathbb{N}

M1=f(0)=1M_1 = f(0) = 1

M2=f(12)=34M_2 = f(\frac{1}{2}) = \frac{3}{4}

M3=f(23)=59M_3 = f(\frac{2}{3}) = \frac{5}{9}

δx1=12\delta x_1 = \frac{1}{2}

δx2=16\delta x_2 = \frac{1}{6}

δx3=13\delta x_3 = \frac{1}{3}

U(P1,f)=M1δx1+M2δx2+M3δx3=12+18+527=175216U(P_1,f) = M_1 \delta x_1 + M_2 \delta x_2 + M_3 \delta x_3 = \frac{1}{2} + \frac{1}{8} + \frac{5}{27} = \frac{175}{216}


2) We aim to find L(P2,f)L(P_2,f)

P2={[0,14][14,12][12,34][34,1]}P_2 = \{[0, \frac{1}{4}][ \frac{1}{4}, \frac{1}{2} ] [\frac{1}{2}, \frac{3}{4}] [ \frac{3}{4},1 ] \}

The function f, as defined is decreasing for each subinterval of [0,1], thus the infimum of f, is the v alue of f at the right end point of each subinterval

Define,

mi=inf{f(x):x[xi1,xi]}m_i = inf \{ f(x): x \in [x_{i-1}, x_i] \}

m1=f(14)=1516m_1 = f(\frac{1}{4}) = \frac{15}{16}

m2=f(12)=34m_2 = f(\frac{1}{2}) = \frac{3}{4}

m3=f(34)=716m_3 = f(\frac{3}{4}) = \frac{7}{16}

m4=f(1)=0m_4 = f(1) = 0

δxi=14\delta x_i = \frac{1}{4} for each i

L(P2,f)=m1δx1+m2δx2+m3δx3+m4δx4=1564+316+764+0=1732L(P_2,f) = m_1 \delta x_1 + m_2 \delta x_2 + m_3 \delta x_3 + m_4 \delta x_4 = \frac{15}{64} + \frac{3}{16} + \frac{7}{64} +0 = \frac{17}{32}







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS