lim n → ∞ ( n n 2 + n ( n + 3 ) 2 + ⋯ + n ( 7 n − 3 ) 2 ) = lim n → ∞ ( 1 n + n ( n + 3 ) 2 + ⋯ + n ( 7 n − 3 ) 2 ) = lim n → ∞ ( 1 n + 1 n ( 1 + 1 n ) 2 + ⋯ + 1 n ( 7 − 3 n ) 2 ) = 0 + 0 + ⋯ + 0 = 0 \displaystyle
\begin{aligned}
\lim_{n \to \infty} \left(\frac{\sqrt{n}}{\sqrt{n^2}} + \frac{\sqrt{n}}{\sqrt{(n + 3)^2}} + \cdots + \frac{\sqrt{n}}{\sqrt{(7n - 3)^2}}\right) &= \lim_{n \to \infty} \left(\sqrt{\frac{1}{n}} + \sqrt{\frac{n}{(n + 3)^2}} + \cdots \right. \\&\left.+\sqrt{\frac{n}{(7n - 3)^2}}\right)
\\&= \lim_{n \to \infty} \left(\sqrt{\frac{1}{n}} + \sqrt{\frac{1}{n\left(1 + \frac{1}{n}\right)^2}} + \cdots \right.
\\&\left. +\sqrt{\frac{1}{n\left(7 - \frac{3}{n}\right)^2}}\right)
\\&= 0 + 0 + \cdots + 0 = 0
\end{aligned} n → ∞ lim ( n 2 n + ( n + 3 ) 2 n + ⋯ + ( 7 n − 3 ) 2 n ) = n → ∞ lim ( n 1 + ( n + 3 ) 2 n + ⋯ + ( 7 n − 3 ) 2 n ) = n → ∞ lim ( n 1 + n ( 1 + n 1 ) 2 1 + ⋯ + n ( 7 − n 3 ) 2 1 ) = 0 + 0 + ⋯ + 0 = 0
Comments