Question #207672

Evaluate,

lim(√n/√n^2+ √n/√(n+3)^2+...√n/√(7n- 3)^2

n→∞


1
Expert's answer
2021-06-22T08:40:05-0400

limn(nn2+n(n+3)2++n(7n3)2)=limn(1n+n(n+3)2++n(7n3)2)=limn(1n+1n(1+1n)2++1n(73n)2)=0+0++0=0\displaystyle \begin{aligned} \lim_{n \to \infty} \left(\frac{\sqrt{n}}{\sqrt{n^2}} + \frac{\sqrt{n}}{\sqrt{(n + 3)^2}} + \cdots + \frac{\sqrt{n}}{\sqrt{(7n - 3)^2}}\right) &= \lim_{n \to \infty} \left(\sqrt{\frac{1}{n}} + \sqrt{\frac{n}{(n + 3)^2}} + \cdots \right. \\&\left.+\sqrt{\frac{n}{(7n - 3)^2}}\right) \\&= \lim_{n \to \infty} \left(\sqrt{\frac{1}{n}} + \sqrt{\frac{1}{n\left(1 + \frac{1}{n}\right)^2}} + \cdots \right. \\&\left. +\sqrt{\frac{1}{n\left(7 - \frac{3}{n}\right)^2}}\right) \\&= 0 + 0 + \cdots + 0 = 0 \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS