Question #207317

Calculate the following integrals by using the integration

methods.

1

a) ∫ (4𝑥^34 + 8𝑥^3 + 15𝑥)𝑑𝑥 / (√𝑥^2 + 4x)

0


b) ∫ 𝑑𝑥 / sin 𝑥 ∙ cos^2 𝑥


1
Expert's answer
2021-07-19T08:14:47-0400

(a)


u=x+2,du=dxu=x+2, du=dx

4𝑥4+8𝑥3+15𝑥=4x3(x+2)+15x4𝑥^4 + 8𝑥^3 + 15𝑥=4x^3(x+2)+15x

=4u(u2)3+15(u2)=4u(u-2)^3+15(u-2)

=4u424u3+48u232u+15u30=4u^4-24u^3+48u^2-32u+15u-30


=4u2(u24)+16u224u(u24)96u=4u^2(u^2-4)+16u^2-24u(u^2-4)-96u

+48u232u+15u30+48u^2-32u+15u-30

=4u2(u24)24u(u24)+64(u24)=4u^2(u^2-4)-24u(u^2-4)+64(u^2-4)


113u+226-113u+226




x2+4x=x2+4x+44=u24\sqrt{x^2+4x}=\sqrt{x^2+4x+4-4}= \sqrt{u^2-4}

Table of Integrals


u2u2a2du=u8(2u2a2)u2a2\int u^2\sqrt{u^2-a^2}du=\dfrac{u}{8}(2u^2-a^2)\sqrt{u^2-a^2}

a48lnu+u2a2+C-\dfrac{a^4}{8}\ln|u+\sqrt{u^2-a^2}|+C


uu2a2du=13(u2a2)u2a2+C\int u\sqrt{u^2-a^2}du=\dfrac{1}{3}(u^2-a^2)\sqrt{u^2-a^2}+C

a48lnu+u2a2+C-\dfrac{a^4}{8}\ln|u+\sqrt{u^2-a^2}|+C


u2a2du=u2u2a2\int \sqrt{u^2-a^2}du=\dfrac{u}{2}\sqrt{u^2-a^2}

a22lnu+u2a2+C-\dfrac{a^2}{2}\ln|u+\sqrt{u^2-a^2}|+C

uu2a2du=u2a2+C\int\dfrac{u}{\sqrt{u^2-a^2}}du=\sqrt{u^2-a^2}+C


1u2a2du=lnu+u2a2+C\int\dfrac{1}{\sqrt{u^2-a^2}}du=\ln|u+\sqrt{u^2-a^2}|+C


4u424u3+48u217u30u24du\int\dfrac{4u^4-24u^3+48u^2-17u-30}{\sqrt{u^2-4}}du




=4u2u24du24uu24du=\int4u^2\sqrt{u^2-4}du-\int24u\sqrt{u^2-4}du

+64u24du113uu24du+226u24du+\int64\sqrt{u^2-4}du-\int\dfrac{113u}{\sqrt{u^2-4}}du+\int\dfrac{226}{\sqrt{u^2-4}}du

=u(u22)u248lnu+u24=u(u^2-2)\sqrt{u^2-4}-8\ln|u+\sqrt{u^2-4}|-

8(u24)u24-8(u^2-4)\sqrt{u^2-4}

+32uu24128lnu+u24+32u\sqrt{u^2-4}-128\ln|u+\sqrt{u^2-4}|

113u24+226lnu+u24+C-113\sqrt{u^2-4}+226\ln|u+\sqrt{u^2-4}|+C

=u24(u32u8u2+32+32u113)=\sqrt{u^2-4}(u^3-2u-8u^2+32+32u-113)

+90lnu+u24+C+90\ln|u+\sqrt{u^2-4}|+C

=x2+4x((x+2)38(x+2)2+30(x+2)81)=\sqrt{x^2+4x}((x+2)^3-8(x+2)^2+30(x+2)-81)

+90lnx+2+x2+4x+C+90\ln|x+2+\sqrt{x^2+4x}|+C

014𝑥4+8𝑥3+15𝑥x2+4xdx\displaystyle\int_{0}^{1}\dfrac{4𝑥^4 + 8𝑥^3 + 15𝑥}{ \sqrt{x^2+4x}}dx

=5(2772+9081)+90ln(3+5)=\sqrt{5}(27-72+90-81)+90\ln(3+\sqrt{5})

90ln(2)=90ln(3+52)36-90\ln(2)=90\ln(\dfrac{3+\sqrt{5}}{2})-36


(b)


dxsinxcos2x=(1+tan2x)dxsinx\int\dfrac{dx}{\sin x\cos^2 x}=\int\dfrac{(1+\tan^2 x)dx}{\sin x}

dxsinx=sinxdxsin2x=sinxdx1cos2x\int\dfrac{dx}{\sin x}=\int\dfrac{\sin x dx}{\sin^2 x}=\int\dfrac{\sin xdx}{1-\cos^2 x}

=12sinxdx1cosx12sinxdx1+cosx=\dfrac{1}{2}\int\dfrac{\sin xdx}{1-\cos x}-\dfrac{1}{2}\int\dfrac{\sin xdx}{1+\cos x}

=12ln(1cosx)12ln(1+cosx)+C1=\dfrac{1}{2}\ln(1-\cos x)-\dfrac{1}{2}\ln(1+\cos x)+C_1


tan2xdxsinx=sinxdxcos2x=1cosx+C2\int\dfrac{\tan^2 xdx}{\sin x}=\int\dfrac{\sin x dx}{\cos^2 x}=\dfrac{1}{\cos x}+C_2

Therefore


dxsinxcos2x=12ln(1cosx)12ln(1+cosx)\int\dfrac{dx}{\sin x\cos^2 x}=\dfrac{1}{2}\ln(1-\cos x)-\dfrac{1}{2}\ln(1+\cos x)

+1cosx+C+\dfrac{1}{\cos x}+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS