Question #207315

Suppose 𝑓 and 𝑔 are continuous functions on [𝑎, 𝑏] and that

𝑔(𝑥) ≥ 0 for all 𝑥 ∈ [𝑎, 𝑏]. Prove that there exists 𝑥 in [𝑎, 𝑏] such that

𝑏 𝑏

∫ 𝑓(𝑡)𝑔(𝑡)𝑑𝑡 = 𝑓(𝑥) ∫ 𝑔(𝑡)𝑑𝑡.

𝑎 𝑎



1
Expert's answer
2021-06-16T10:26:44-0400

Proof.

Since ff is continuous on the segment [a,b][a,b] then ff is bounded. We denote M=max[a,b]f(x) , m=min[a,b]f(x)M=\max _{ [a,b] }{ f(x)\ ,\ m=\min _{ [a,b] }{ f(x) } } .Thus mf(x)Mm\le f(x)\le M . Multiplying by g(x)g(x) , we obtain the inequality mg(x)f(x)g(x)Mg(x)mg(x)\le f(x)g(x)\le Mg(x) . All function in the inequality are continuous , hence integrable. We integrate the inequality:

mabg(x)dxabf(x)g(x)dxMabg(x)dxm\int _{ a }^{ b }{ g(x)dx\le \int _{ a }^{ b }{ f(x)g(x)dx\le M\int _{ a }^{ b }{ g(x)dx } } } (1)

Since, g(x)0g(x)\ge 0 , then abg(x)dx0\int _{ a }^{ b }{ g(x)dx } \ge 0 . If abg(x)dx=0\int _{ a }^{ b }{ g(x)dx } =0 , then from (1) it follows abf(x)g(x)dx=0\int _{ a }^{ b }{ f(x)g(x)dx } =0 . In this case the equality

abf(x)g(x)dx=f(x)ab g(x)dx\int _{ a }^{ b }{ f(x)g(x)dx } =f(x)\int _{ a }^{ b }{ \ g(x)dx } (2)

has the form 0=f(x)00=f(x)\cdot 0 and is satisfied for any x[a,b]x\in \left[ a,b \right] .

If ab g(x)dx0\int _{ a }^{ b }{ \ g(x)dx } \neq 0\quad, then ab g(x)dx>0\int _{ a }^{ b }{ \ g(x)dx } >0\quad. Denote c=abf(x)g(x)dxab g(x)dxc=\frac { \int _{ a }^{ b }{ f(x)g(x)dx } }{ \int _{ a }^{ b }{ \ g(x)dx } } .

Dividing all parts of inequality (1) by ab g(x)dx\int _{ a }^{ b }{ \ g(x)dx } we have mcMm\le c\le M . By the Theorem on the intermediate value of a continuous function there is a point x[a,b]x\in \left[ a,b \right] such that f(x)=c.f(x)=c. So there exists point x[a,b]x\in \left[ a,b \right] such that equality (2) is satisfied.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS