n=3∑∞n22n(−1)n(n−2)(x−2)n
∣∣anan+1∣∣=∣∣n22n(n−2)(x−2)n(n+1)22n+1(n+1−2)(x−2)n+1∣∣
=2(n−2)(n+1)2(n−1)n2∣x−2∣→21∣x−2∣ as n→∞
21∣x−2∣<1=>∣x−2∣<2 Radius of convergence: 2.
x=0
n=3∑∞n22n(−1)n(n−2)(0−2)n=n=3∑∞n2n−2 Use the Limit Comparison Test with
n=3∑∞bn=n=3∑∞n1
n→∞limn1n2n−2=1>0 The garmonic series n=3∑∞n1 diverges as p series with p=1.
Then the series n=3∑∞n2n−2 diverges by the Limit Comparison Test.
x=4
n=3∑∞n22n(−1)n(n−2)(4−2)n=n=3∑∞n2(−1)n(n−2) Use the Alternating Series Test
an=n2n−2
n→∞liman=n→∞limn2n−2=0
an+1=(n+1)2n+1−2<n2n−2=an,n≥3 Then the series n=3∑∞n2(−1)n(n−2) converges by the Alternating Series Test.
Therefore the interval of convergence is (0,4].
Comments