Question #207313

Find the interval of convergence of the power series

Σ [(−1)^𝑛 (𝑛 − 2) / 𝑛^2 . 2^𝑛] (𝑥 − 2)^𝑛

𝑛=3


1
Expert's answer
2021-06-16T06:25:31-0400
n=3(1)n(n2)n22n(x2)n\displaystyle\sum_{n=3}^{\infin}\dfrac{(-1)^n(n-2)}{n^22^n}(x-2)^n

an+1an=(n+12)(n+1)22n+1(x2)n+1(n2)n22n(x2)n\bigg|\dfrac{a_{n+1}}{a_n}\bigg|=\bigg|\dfrac{\dfrac{(n+1-2)}{(n+1)^22^{n+1}}(x-2)^{n+1}}{\dfrac{(n-2)}{n^22^n}(x-2)^n}\bigg|

=(n1)n22(n2)(n+1)2x212x2 as n=\dfrac{(n-1)n^2}{2(n-2)(n+1)^2}|x-2|\to\dfrac{1}{2}|x-2|\ as\ n\to\infin


12x2<1=>x2<2\dfrac{1}{2}|x-2|<1=>|x-2|<2

Radius of convergence: 2.2.


x=0x=0


n=3(1)n(n2)n22n(02)n=n=3n2n2\displaystyle\sum_{n=3}^{\infin}\dfrac{(-1)^n(n-2)}{n^22^n}(0-2)^n=\displaystyle\sum_{n=3}^{\infin}\dfrac{n-2}{n^2}

Use the Limit Comparison Test with


n=3bn=n=31n\displaystyle\sum_{n=3}^{\infin}b_n=\displaystyle\sum_{n=3}^{\infin}\dfrac{1}{n}

limnn2n21n=1>0\lim\limits_{n\to\infin}\dfrac{\dfrac{n-2}{n^2}}{\dfrac{1}{n}}=1>0

The garmonic series n=31n\displaystyle\sum_{n=3}^{\infin}\dfrac{1}{n} diverges as pp series with p=1.p=1.

Then the series n=3n2n2\displaystyle\sum_{n=3}^{\infin}\dfrac{n-2}{n^2} diverges by the Limit Comparison Test.


x=4x=4


n=3(1)n(n2)n22n(42)n=n=3(1)n(n2)n2\displaystyle\sum_{n=3}^{\infin}\dfrac{(-1)^n(n-2)}{n^22^n}(4-2)^n=\displaystyle\sum_{n=3}^{\infin}\dfrac{(-1)^n(n-2)}{n^2}

Use the Alternating Series Test


an=n2n2a_n=\dfrac{n-2}{n^2}

limnan=limnn2n2=0\lim\limits_{n\to\infin}a_n=\lim\limits_{n\to\infin}\dfrac{n-2}{n^2}=0

an+1=n+12(n+1)2<n2n2=an,n3a_{n+1}=\dfrac{n+1-2}{(n+1)^2}<\dfrac{n-2}{n^2}=a_n, n\geq 3

Then the series n=3(1)n(n2)n2\displaystyle\sum_{n=3}^{\infin}\dfrac{(-1)^n(n-2)}{n^2} converges by the Alternating Series Test.

Therefore the interval of convergence is (0,4].(0, 4].



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS