Prove that the following series is convergent for all 𝑟 ∈ ℝ
Σ (1 + 1/2 + ... + 1/n) (sin (nr) / n).
let:
an=Σ(1/n)n∣sin(nr)∣a_n=\frac{Σ ( 1/n)}{ n}|sin(nr)|an=nΣ(1/n)∣sin(nr)∣
bn=Σ(1/n)nb_n=\frac{Σ ( 1/n)}{ n}bn=nΣ(1/n)
∣sin(nr)∣≤1|sin (nr)|\le 1∣sin(nr)∣≤1 , then:
an≤bna_n\le b_nan≤bn
also:
bn≤∑(1/n2)b_n\le \sum (1/n^2)bn≤∑(1/n2)
So, since ∑(1/n2)\sum (1/n^2)∑(1/n2) converges, bn=Σ(1/n)nb_n=\frac{Σ ( 1/n)}{ n}bn=nΣ(1/n) converges as well
so, ∑bn\sum b_n∑bn converges
then, ∑an\sum a_n∑an converges
so, series ∑(1+1/2+...+1/n)sin(nr)n\sum (1+1/2+...+1/n)\frac{sin(nr)}{n}∑(1+1/2+...+1/n)nsin(nr) converges
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments