Question #207091

Show that the series summation of 1/a^2 from a=1 to infinity converge and find the sum of the series. Hence or otherwise prove the summation from a=1 to infinity is equal to π^2/6


1
Expert's answer
2021-06-15T18:11:20-0400

The series a=11a2\displaystyle\sum_{a=1}^{\infin}\dfrac{1}{a^2} converges (p-series with p=2p=2 ).

The Taylor series for the function f(x)=sin(x)f(x)=\sin(x) is


sin(x)=xx33!+x55!x77!+...\sin(x)=x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-\dfrac{x^7}{7!}+...

Since the equation f(x)=sin(x)=0f(x)=\sin(x)=0 has the following roots


x=0,x=±π,x=±2π,x=±3π,...x=0, x=\pm\pi, x=\pm2\pi,x=\pm3\pi, ...

we have


sin(x)=Cx(xπ)(x+π)(x2π)(x+2π)...\sin(x)=Cx(x-\pi)(x+\pi)(x-2\pi)(x+2\pi)...


sin(x)=Cx(x2π2)(x222π2)(x232π2)...\sin(x)=Cx(x^2-\pi^2)(x^2-2^2\pi^2)(x^2-3^2\pi^2)...

Then


sin(x)=xx33!+x55!x77!+...\sin(x)=x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-\dfrac{x^7}{7!}+...

=Cx(x2π2)(x222π2)(x232π2)...=Cx(x^2-\pi^2)(x^2-2^2\pi^2)(x^2-3^2\pi^2)...


1x23!+x45!x67!+...1-\dfrac{x^2}{3!}+\dfrac{x^4}{5!}-\dfrac{x^6}{7!}+...


=C(x2π2)(x222π2)(x232π2)...=C(x^2-\pi^2)(x^2-2^2\pi^2)(x^2-3^2\pi^2)...



Substitute x2x^2 by x,x, we have


1x3!+x25!x37!+...1-\dfrac{x}{3!}+\dfrac{x^2}{5!}-\dfrac{x^3}{7!}+...

=C(xπ2)(x22π2)(x32π2)...=C(x-\pi^2)(x-2^2\pi^2)(x-3^2\pi^2)...

By normalization, we obtain


1x3!+x25!x37!+...1-\dfrac{x}{3!}+\dfrac{x^2}{5!}-\dfrac{x^3}{7!}+...

=(xπ2)π2(x22π2)22π2(x32π2)32π2...=\dfrac{(x-\pi^2)}{-\pi^2}\cdot\dfrac{(x-2^2\pi^2)}{-2^2\pi^2}\cdot\dfrac{(x-3^2\pi^2)}{-3^2\pi^2}...

=(1xπ2)(1x22π2)(1x32π2)...=(1-\dfrac{x}{\pi^2})(1-\dfrac{x}{2^2\pi^2})(1-\dfrac{x}{3^2\pi^2})...


Use Vieta formula

Comparing the coefficients of xx  in both sides of the equation


x3!=xπ2x22π2x32π2...-\dfrac{x}{3!}=-\dfrac{x}{\pi^2}-\dfrac{x}{2^2\pi^2}-\dfrac{x}{3^2\pi^2}-...

Therefore


13!=1π2122π2132π2...-\dfrac{1}{3!}=-\dfrac{1}{\pi^2}-\dfrac{1}{2^2\pi^2}-\dfrac{1}{3^2\pi^2}-...


11+122+132+...=π23!\dfrac{1}{1}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...=\dfrac{\pi^2}{3!}

a=11a2=π26\displaystyle\sum_{a=1}^{\infin}\dfrac{1}{a^2}=\dfrac{\pi^2}{6}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS