Question #207088

Given the function g(x)=(x+7^3

a) Find the critical points of g(x)

b) On what intervals is g(x) increasing and decreasing

c) At what points, if any does g(x) local and absolute minimum and maximum values?


1
Expert's answer
2021-06-15T18:19:31-0400
g(x)=(x+7)3g(x)=(x+7)^3

Domain: (,)(-\infin, \infin)

1.

Find the first derivative with respect to xx


g(x)=((x+7)3)=3(x+7)2g'(x)=((x+7)^3)'=3(x+7)^2

Find the critical number(s)


g(x)=0=>3(x+7)2=0=>x=7.g'(x)=0=>3(x+7)^2=0=>x=-7.

Critical number: -7.

If x<7,g(x)>0,g(x)x<-7, g'(x)>0, g(x) increases.


If x>7,g(x)>0,g(x)x>-7, g'(x)>0, g(x) increases.


The critical point x=7.x=-7.


b)

The function g(x)g(x) increases on (,).(-\infin, \infin).

The function g(x)g(x) is never decreasing.


c)

The function g(x)g(x) is always increasing on (,).(-\infin, \infin).

The function g(x)g(x) has neither maximum nor minimum at x=7.x=-7.

The function g(x)g(x) has no absolute maxium value on (,).(-\infin, \infin).

The function g(x)g(x) has no absolute minium value on (,).(-\infin, \infin).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS