n=1∑∞(n4+9−n4−9)
=n=1∑∞(n4+9−n4−9)n4+9+n4−9n4+9+n4−9
=n=1∑∞n4+9+n4−9n4+9−n4+9
=18n=1∑∞n4+9+n4−91
Use the Limit Comparison Test with
an=n4+9+n4−91,bn=n21
and obtain
n→∞limbnan=n→∞limn21n4+9+n4−91
=n→∞lim1+n49+1−n491=21>0
Since
n=1∑∞bn=n=1∑∞n21 is convergent (p -series with p=2 ), the series n=1∑∞n4+9+n4−91 converges by the Limit Comparison Test.
Therefore the given series n=1∑∞(n4+9−n4−9) is convergent by the Limit Comparison Test.
Comments