Question #206165

Test the following series for convergence


n=1 [✓(n^4 +9) -✓(n^4 -9)]


1
Expert's answer
2021-06-14T18:42:33-0400
n=1(n4+9n49)\displaystyle\sum_{n=1}^{\infin}(\sqrt{n^4+9}-\sqrt{n^4-9})




=n=1(n4+9n49)n4+9+n49n4+9+n49=\displaystyle\sum_{n=1}^{\infin}(\sqrt{n^4+9}-\sqrt{n^4-9})\dfrac{\sqrt{n^4+9}+\sqrt{n^4-9}}{\sqrt{n^4+9}+\sqrt{n^4-9}}


=n=1n4+9n4+9n4+9+n49=\displaystyle\sum_{n=1}^{\infin}\dfrac{n^4+9-n^4+9}{\sqrt{n^4+9}+\sqrt{n^4-9}}

=18n=11n4+9+n49=18\displaystyle\sum_{n=1}^{\infin}\dfrac{1}{\sqrt{n^4+9}+\sqrt{n^4-9}}

Use the Limit Comparison Test with


an=1n4+9+n49,bn=1n2a_n=\dfrac{1}{\sqrt{n^4+9}+\sqrt{n^4-9}}, b_n=\dfrac{1}{n^2}


and obtain


limnanbn=limn1n4+9+n491n2\lim\limits_{n\to\infin}\dfrac{a_n}{b_n}=\lim\limits_{n\to\infin}\dfrac{\dfrac{1}{\sqrt{n^4+9}+\sqrt{n^4-9}}}{\dfrac{1}{n^2}}

=limn11+9n4+19n4=12>0=\lim\limits_{n\to\infin}\dfrac{1}{\sqrt{1+\dfrac{9}{n^4}}+\sqrt{1-\dfrac{9}{n^4}}}=\dfrac{1}{2}>0

Since


n=1bn=n=11n2\displaystyle\sum_{n=1}^{\infin}b_n=\displaystyle\sum_{n=1}^{\infin}\dfrac{1}{n^2}

is convergent (pp -series with p=2p=2 ), the series n=11n4+9+n49\displaystyle\sum_{n=1}^{\infin}\dfrac{1}{\sqrt{n^4+9}+\sqrt{n^4-9}} converges by the Limit Comparison Test.


Therefore the given series n=1(n4+9n49)\displaystyle\sum_{n=1}^{\infin}(\sqrt{n^4+9}-\sqrt{n^4-9}) is convergent by the Limit Comparison Test.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS