Question #203261

Are the following statements true or false? Give reasons for tour answers.

a) −2 isalimitpointoftheinterval ]−3,2].

b) The series (1/2) - (1/6) + (1/10) (−1/4) +.... is divergent.

c) The function, f (x) = sin2x is uniformly continuous in the interval [0,π].

d) Every continuous function is differentiable.

e) The function f defined on R by

f(x)= {0, if x is rational and 2, if x is irrational

Is integral element in the interval [2,3].


1
Expert's answer
2021-06-07T12:00:31-0400

a) true

Notation (a,b](a,b] means that bb is included in the interval.


b) false

Since an+1an<1\frac{|a_{n+1}|}{|a_n|}<1 , the series is convergent.


c) false

 The function f(x) is uniformly continuous in the interval [0,2π][0,2\pi] if

 ε  δ>0  x1,x1[0,2π] (x1x2<δ)    (f(x1)f(x2)<ε)\forall\ \varepsilon\ \exists\ \delta>0\ \forall\ x_1,x_1\isin[0,2\pi]\ (|x_1-x_2|<\delta)\implies (f(x_1)-f(x_2)<\varepsilon)

Let ε=1Let\ \varepsilon=1 and sin2x1=0,sin2x2=±1sin^2x_1=0,sin^2x_2=\pm 1

Then:

x12=πn,x2=πn+π/2x_1^2=\pi n,x_2=\pi n+\pi/2


x1x2=πn+π/2πn=π/2πn+π/2+πn<22πn<1n|x_1-x_2=\sqrt{\pi n+\pi/2}-\sqrt{\pi n}=\frac{\pi/2}{\sqrt{\pi n+\pi/2}+\sqrt{\pi n}}<\frac{2}{2\sqrt{\pi n}}<\frac{1}{\sqrt{n}}

If n>1/δ2n>1/\delta^2 then x1x2<δ|x_1-x_2|<\delta , butf(x1)f(x2)=1|f(x_1)-f(x_2)|=1

So, the given function is not uniformly continuous in the interval [0,π].


d) false

For example, continuous function f(x)=xf(x)=|x| is not differentiable at x=0


e) false

An element b of a commutative ring B is said to be integral over A, a subring of B, if there are n ≥ 1 and aj in A such that

bn+an1bn1+...+a1b+a0=0b^n+a_{n-1}b^{n-1}+...+a_1b+a_0=0

For the given function:

 if x is irrational, then there are no coefficients x0,x1,...,xnx_0,x_1,...,x_n , such that:

2n+2n1xn1+...+2x1+x0=02^n+2^{n-1}\cdot x_{n-1}+...+2x_1+x_0=0



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS