Question #203185

Examine the function, f (x) = (x +1)3 (x − 3)2 for extreme values.


1
Expert's answer
2021-06-09T17:15:45-0400
f(x)=(x+1)3(x3)2f(x)=(x+1)^3(x-3)^2

Domain: (,)(-\infin, \infin)


f(x)=((x+1)3(x3)2)=f'(x)=((x+1)^3(x-3)^2)'=

=3(x+1)2(x3)2+2(x3)(x+1)3=3(x+1)^2(x-3)^2+2(x-3)(x+1)^3

=(x+1)2(x3)(3(x3)+2(x+1))=(x+1)^2(x-3)(3(x-3)+2(x+1))

=(x+1)2(x3)(5x7)=(x+1)^2(x-3)(5x-7)

Find the critical number(s)


f(x)=0=>(x+1)2(x3)(5x7)=0f'(x)=0=>(x+1)^2(x-3)(5x-7)=0

x1=1,x2=1.4,x3=3x_1=-1, x_2=1.4, x_3=3

Critical numbers: 1,1.4,3-1, 1.4, 3

If x<1,f(x)>0,f(x)x<-1, f'(x)>0, f(x) increases.


If 1<x<1.4,f(x)>0,f(x)-1<x<1.4, f'(x)>0, f(x) increases.


If 1.4<x<3,f(x)<0,f(x)1.4<x<3, f'(x)<0, f(x) decreases.


If x>3,f(x)>0,f(x)x>3, f'(x)>0, f(x) increases.



f(x)=((x+1)2(x3)(5x7))f''(x)=((x+1)^2(x-3)(5x-7))'

=2(x+1)(x3)(5x7)+(x+1)2(5x7)=2(x+1)(x-3)(5x-7)+(x+1)^2(5x-7)

+5(x+1)2(x3)+5(x+1)^2(x-3)

=(x+1)(10x214x30x+42)=(x+1)(10x^2-14x-30x+42)

+(x+1)(5x27x+5x7)+(x+1)(5x^2-7x+5x-7)


+(x+1)(5x215x+5x15)+(x+1)(5x^2-15x+5x-15)

=(x+1)(20x256x+20)=(x+1)(20x^2-56x+20)

f(1)=0f''(-1)=0

f(1.4)=46.08<0f''(1.4)=-46.08<0


f(3)=128>0f''(3)=128>0

The function f(x)f(x) has a local maximum at x=1.4.x=1.4.


The function f(x)f(x) has a local minimum at x=3.x=3.


The function f(x)f(x) has neither maximum nor minimum at x=1.x=-1.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS