f(x)=(x+1)3(x−3)2 Domain: (−∞,∞)
f′(x)=((x+1)3(x−3)2)′=
=3(x+1)2(x−3)2+2(x−3)(x+1)3
=(x+1)2(x−3)(3(x−3)+2(x+1))
=(x+1)2(x−3)(5x−7) Find the critical number(s)
f′(x)=0=>(x+1)2(x−3)(5x−7)=0
x1=−1,x2=1.4,x3=3
Critical numbers: −1,1.4,3
If x<−1,f′(x)>0,f(x) increases.
If −1<x<1.4,f′(x)>0,f(x) increases.
If 1.4<x<3,f′(x)<0,f(x) decreases.
If x>3,f′(x)>0,f(x) increases.
f′′(x)=((x+1)2(x−3)(5x−7))′
=2(x+1)(x−3)(5x−7)+(x+1)2(5x−7)
+5(x+1)2(x−3)
=(x+1)(10x2−14x−30x+42)
+(x+1)(5x2−7x+5x−7)
+(x+1)(5x2−15x+5x−15)
=(x+1)(20x2−56x+20)
f′′(−1)=0
f′′(1.4)=−46.08<0
f′′(3)=128>0 The function f(x) has a local maximum at x=1.4.
The function f(x) has a local minimum at x=3.
The function f(x) has neither maximum nor minimum at x=−1.
Comments