Question #203180

Prove that

lim n→∞ [ 1/ (2n-1) + 1/ (4n-22) + 1/ (6n-32) +.... + 1/n ] = π /2

1
Expert's answer
2021-06-07T17:23:58-0400

limn[12n1+14n22+16n32+•••+1n]=limnk=1n[12knk2]=limnk=1n1n12(kn)(kn)2By integral test,0112xx2dx=0111(x1)2dxPut x1=t    dx=dt1011t2dt=sin1t]10=sin1(0)sin1(1)=0(π2)=π2lim _{n→∞} [ \frac{1}{\sqrt{2n-1}}+\frac{1}{\sqrt{4n-2^2}}+\frac{1}{\sqrt{6n-3^2}}+•••+\frac{1}{n}]=lim _{n→∞}\sum_{k=1 } ^n [ \frac{1}{\sqrt{2kn-k^2}}]\\ =lim _{n→∞}\sum_{k=1 } ^n \frac{1}{n} \frac{1}{\sqrt{2(\frac{k}{n})-(\frac{k}{n}) ^2}}\\ \text{By integral test,}\\ \int_0^1 \frac{1}{\sqrt{2x-x^2}}dx\\ =\int_0^1 \frac{1}{\sqrt{1-(x-1)^2}}dx\\ Put \space x-1=t\implies dx=dt\\ \int_{-1}^0 \frac{1}{\sqrt{1-t^2}}dt\\ =sin^{-1}t]_{-1}^0\\ =sin^{-1}(0)-sin^{-1}(-1)\\ =0-(-\frac{\pi}{2})\\ =\frac{\pi}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS