Answer to Question #203172 in Real Analysis for Rajkumar

Question #203172

Examine the convergence of the following series:

i) (3×4)/52 + (5×6)/72 + (7×8)/92....


ii) 1 + 4x + 42x2 + 43x3 +....(x > 0)

1
Expert's answer
2021-06-07T16:05:05-0400
i=1(2n+1)(2n+2)(2n+3)2=3×452+5×672+7×892+...\displaystyle\sum_{i=1}^{\infin}\dfrac{(2n+1)(2n+2)}{(2n+3)^2}=\dfrac{3\times4}{5^2}+\dfrac{5\times6}{7^2}+\dfrac{7\times8}{9^2}+...

Use the Test for Divergence


limnan=limnan(2n+1)(2n+2)(2n+3)2\lim\limits_{n\to \infin}a_n=\lim\limits_{n\to \infin}a_n\dfrac{(2n+1)(2n+2)}{(2n+3)^2}

=limnan(2+1n)(2+2n)(2n+3n)2=\lim\limits_{n\to \infin}a_n\dfrac{(2+\dfrac{1}{n})(2+\dfrac{2}{n})}{(2n+\dfrac{3}{n})^2}

=2(2)(2)2=10=\dfrac{2(2)}{(2)^2}=1\not=0

The given series diverges by the Test for Divergence.


(ii)


i=0(4x)n=1+4x+42x2+43x3+...(x>0)\displaystyle\sum_{i=0}^{\infin}(4x)^n=1+4x+4^2x^2+4^3x^3+... (x>0)

The geometric series


i=0arn\displaystyle\sum_{i=0}^{\infin}ar^n

is convergent if r<1.|r|<1.

If r1,|r|\geq1, the geometric series diverges.

We have r=4x,x>0r=4x, x>0

Then the given series converges for 0<x<140<x<\dfrac{1}{4} and diverges for x14.x\geq \dfrac{1}{4}.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment