i=1∑∞(2n+3)2(2n+1)(2n+2)=523×4+725×6+927×8+... Use the Test for Divergence
n→∞liman=n→∞liman(2n+3)2(2n+1)(2n+2)
=n→∞liman(2n+n3)2(2+n1)(2+n2)
=(2)22(2)=1=0 The given series diverges by the Test for Divergence.
(ii)
i=0∑∞(4x)n=1+4x+42x2+43x3+...(x>0) The geometric series
i=0∑∞arn is convergent if ∣r∣<1.
If ∣r∣≥1, the geometric series diverges.
We have r=4x,x>0
Then the given series converges for 0<x<41 and diverges for x≥41.
Comments
Leave a comment