Question #200204

Using the principle of mathematical induction, prove that

(n5/5) + (n3/3) + (7n/15) is a natural number, ∀ n ∈ N .


1
Expert's answer
2021-05-31T19:09:43-0400

Let P(n)=n55+n33+7n15P(n)=\dfrac{n^{5}}{5}+\dfrac{n^{3}}{3}+\dfrac{7n}{15} is a natural number for all nn N∈N

now putting n=1n=1 , we get -


P(1)=155+133+7×115=1515=1P(1)=\dfrac{1^{5}}{5}+\dfrac{1^{3}}{3}+\dfrac{7\times1}{15}=\dfrac{15}{15}=1 .


which is a natural number .


Hence , P(1) is true .


Let us prove that P(n) is true for some natural number n=k.


\therefore P(k)=k55+k33+7k15P(k)=\dfrac{k^{5}}{5}+\dfrac{k^{3}}{3}+\dfrac{7k}{15} is a natural number ..........(1)




Now we have to prove that P(k+1)P(k+1) is true.


P(k+1)=P(k+1)= (k+1)55+(k+1)33+7(k+1)15\dfrac{(k+1)^{5}}{5}+\dfrac{(k+1)^{3}}{3}+\dfrac{7(k+1)}{15}


== k5+5k4+10k3+10k2+5k+15+k3+1+3k2+3k3+7k+715\dfrac{k^{5}+5k^{4}+10k^{3}+10k^{2}+5k+1}{5}+\dfrac{k^{3}+1+3k^{2}+3k}{3}+\dfrac{7k+7}{15}


=k55+k33+7k15+=\dfrac{k^{5}}{5}+\dfrac{k^{3}}{3}+\dfrac{7k}{15}+ 5k4+10k3+10k2+5k+15+\dfrac{5k^{4}+10k^{3}+10k^{2}+5k+1}{5}+ 1+3k2+3k3+715\dfrac{1+3k^{2}+3k}{3}+\dfrac{7}{15}


== k55+k33+7k15 +k4+2k3+2k2+k+k2+k+15+13+715\dfrac{k^{5}}{5}+\dfrac{k^{3}}{3}+\dfrac{7k}{15} \ +k^{4}+2k^{3}+2k^{2}+k+k^{2}+k+\dfrac{1}{5}+\dfrac{1}{3}+\dfrac{7}{15}


== k55+k33+7k15+k4+2k3+3k2+2k+1\dfrac{k^{5}}{5}+\dfrac{k^{3}}{3}+\dfrac{7k}{15}+k^{4}+2k^{3}+3k^{2}+2k+1



which is a natural number .....by using .....(1)



Hence , P(k+1)P(k+1) is true whenever P(k) is true.


so by principal of mathematical induction


P(n)P(n) is true for any natural number n .



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS