Solution:-
Let f(x)=log(1−x1) in [0, 1]
Since f(x) satisfies the condition of L.M.V. theorem in [0, 1], there exists θ(0<θ<1) such that
x−0f(x)−f(0)=f′(θx)⇒xlog(1−x1)=1−θx1
⇒log(1−x1)=1−θxx…(i)
Now, 0<θ<1,0<x<1⇒θx<x
⇒−θx>−x⇒1−θx>1−x⇒1−θx1<1−x1⇒1−θxx<1−xx…(ii)
Again 0<θ<1,0<x<1
⇒θx>0⇒−θx<0⇒1−θx<1⇒1−θx1>1⇒1−θxx>x…(iii)
From (i), (ii) and (iii), we get, x<log(1−x1)<1−xx,0<x<1
Comments