Question #198804

Prove that

x<log(1/1-x)< x/1-x, 0<x<1



1
Expert's answer
2021-06-16T06:33:48-0400

Solution:-

Let f(x)=log(11x)f(x)=\log (\frac1{1-x}) in [0, 1]

Since f(x) satisfies the condition of L.M.V. theorem in [0, 1], there exists θ(0<θ<1)\theta(0<\theta<1) such that

f(x)f(0)x0=f(θx)log(11x)x=11θx\dfrac{f(x)-f(0)}{x-0}=f^{\prime}(\theta x) \\ \Rightarrow \quad \dfrac{\log (\frac1{1-x})}{x}=\dfrac{}{}\dfrac{1}{1-\theta x}

log(11x)=x1θx(i)\Rightarrow \quad \log (\frac1{1-x})=\dfrac{x}{1-\theta x} \quad \ldots (i)

Now, 0<θ<1,0<x<1θx<x\quad 0<\theta<1, 0<x<1 \Rightarrow \theta x<x

θx>x1θx>1x11θx<11xx1θx<x1x(ii)\Rightarrow \quad -\theta x>-x \\\Rightarrow \quad 1-\theta x>1-x \\ \Rightarrow \quad \frac{1}{1-\theta x}<\frac{1}{1-x} \\\Rightarrow \quad \frac{x}{1-\theta x}<\frac{x}{1-x} \quad \ldots (ii)

Again 0<θ<1,0<x<1\quad 0<\theta<1, 0<x<1

θx>0θx<01θx<111θx>1x1θx>x(iii)\Rightarrow \quad \theta x>0 \\\Rightarrow \quad -\theta x<0 \\ \Rightarrow \quad 1-\theta x<1 \\ \Rightarrow \quad \frac{1}{1-\theta x}>1 \\ \Rightarrow \quad \frac{x}{1-\theta x}>x \quad \ldots (iii)

From (i), (ii) and (iii), we get, x<log(11x)<x1x,0<x<1x< \log (\frac1{1-x})<\dfrac{x}{1-x}, 0<x<1

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS