For any point ( x , y , z ) (x,y,z) ( x , y , z ) on the surface x = 4 − y 2 − z 2 x=4-y^2-z^2 x = 4 − y 2 − z 2
F = x + y 2 + z 2 − 4 F=x+y^2+z^2-4 F = x + y 2 + z 2 − 4
Then,
▽ F = i + y j + 2 z k \triangledown F=i+yj+2zk ▽ F = i + y j + 2 z k
∣ ▽ F ∣ = 1 + 4 y 2 + 4 z 2 |\triangledown F|=\sqrt{1+4y^2+4z^2} ∣ ▽ F ∣ = 1 + 4 y 2 + 4 z 2
Here, p = i , ∣ ▽ F ⋅ p ∣ = ∣ 1 ∣ = 1 p=i, \ |\triangledown F\cdot p|=|1|=1 p = i , ∣ ▽ F ⋅ p ∣ = ∣1∣ = 1
Surface of paraboloid x = 4 − y 2 − z 2 x=4-y^2-z^2 x = 4 − y 2 − z 2 that lies above the ring 1 ≤ y 2 + z 2 ≤ 4 1\leq y^2+z^2\leq 4 1 ≤ y 2 + z 2 ≤ 4 in the y-z plane.
Take y = r c o s θ , z = r s i n θ t h e n 1 ≤ r 2 ≤ 4 y=rcos\theta,\ z=rsin\theta\ \ then\ \ 1\leq r^2\leq 4 y = rcos θ , z = rs in θ t h e n 1 ≤ r 2 ≤ 4
Then, d y d z = r d r d θ , 1 ≤ r ≤ 2 a n d 0 ≤ θ ≤ 2 θ dydz=rdrd\theta,\ 1\leq r\leq 2\ and\ \ 0\leq\theta\leq 2\theta d y d z = r d r d θ , 1 ≤ r ≤ 2 an d 0 ≤ θ ≤ 2 θ
∴ S u r f a c e a r e a S = ∫ ∫ R ∣ ▽ F ∣ ∣ ▽ F ⋅ p ∣ d A = ∫ ∫ R 1 + 4 y 2 + 4 z 2 d y d z \therefore \ \ Surface\ area\ \ S=\int\int_R\dfrac{|\triangledown F|}{|\triangledown F\cdot p|}dA=\int\int_R\sqrt{1+4y^2+4z^2}dydz ∴ S u r f a ce a re a S = ∫ ∫ R ∣ ▽ F ⋅ p ∣ ∣ ▽ F ∣ d A = ∫ ∫ R 1 + 4 y 2 + 4 z 2 d y d z
= ∫ θ = 0 2 π ∫ r = 1 2 1 + 4 r 2 r d r d θ = 1 8 ∫ θ = 0 2 π ∫ r = 1 2 d d r ( 1 + 4 r 2 ) ( 1 + 4 r 2 ) 1 2 d r d θ = 1 8 ∫ θ = 0 2 π ( 1 + 4 r 2 ) 3 / 2 3 / 2 ∣ r = 1 2 d θ = 1 12 ∫ θ = 0 2 π ( 17 17 − 5 5 ) d θ = ( 17 17 − 5 5 ) π 6 = \int_{\theta=0}^{2\pi}\int_{r=1}^2\sqrt{1+4r^2}rdrd\theta\\\ \\=\dfrac{1}{8}\int_{\theta =0}^{2\pi}\int_{r=1}^2\dfrac{d}{dr}(1+4r^2)(1+4r^2)^{\frac{1}{2}}drd\theta\\\ \\=\dfrac{1}{8}\int_{\theta =0}^{2\pi}\dfrac{(1+4r^2)^{3/2}}{3/2}|_{r=1}^{2}d\theta\\\ \\=\dfrac{1}{12}\int_{\theta=0}^{2\pi}(17\sqrt{17}-5\sqrt 5)d\theta\\\ \\=\dfrac{(17\sqrt{17}-5\sqrt 5)\pi}{6} = ∫ θ = 0 2 π ∫ r = 1 2 1 + 4 r 2 r d r d θ = 8 1 ∫ θ = 0 2 π ∫ r = 1 2 d r d ( 1 + 4 r 2 ) ( 1 + 4 r 2 ) 2 1 d r d θ = 8 1 ∫ θ = 0 2 π 3/2 ( 1 + 4 r 2 ) 3/2 ∣ r = 1 2 d θ = 12 1 ∫ θ = 0 2 π ( 17 17 − 5 5 ) d θ = 6 ( 17 17 − 5 5 ) π
∴ Surface Area = ( 17 17 − 5 5 ) π 6 \therefore \boxed{\text{Surface Area }=\dfrac{(17\sqrt{17}-5\sqrt 5)\pi}{6}} ∴ Surface Area = 6 ( 17 17 − 5 5 ) π
Comments