Question #198368

Find the area of the portion of the paraboloid x=4-y²-z²that lies above the ring 1<=y²+z²<=4in the yz plane.


1
Expert's answer
2021-05-25T18:34:46-0400

For any point (x,y,z)(x,y,z) on the surface x=4y2z2x=4-y^2-z^2

F=x+y2+z24F=x+y^2+z^2-4

Then,

F=i+yj+2zk\triangledown F=i+yj+2zk

F=1+4y2+4z2|\triangledown F|=\sqrt{1+4y^2+4z^2}

Here, p=i, Fp=1=1p=i, \ |\triangledown F\cdot p|=|1|=1


Surface of paraboloid x=4y2z2x=4-y^2-z^2 that lies above the ring 1y2+z241\leq y^2+z^2\leq 4 in the y-z plane.

Take y=rcosθ, z=rsinθ  then  1r24y=rcos\theta,\ z=rsin\theta\ \ then\ \ 1\leq r^2\leq 4

Then, dydz=rdrdθ, 1r2 and  0θ2θdydz=rdrd\theta,\ 1\leq r\leq 2\ and\ \ 0\leq\theta\leq 2\theta


  Surface area  S=RFFpdA=R1+4y2+4z2dydz\therefore \ \ Surface\ area\ \ S=\int\int_R\dfrac{|\triangledown F|}{|\triangledown F\cdot p|}dA=\int\int_R\sqrt{1+4y^2+4z^2}dydz

=θ=02πr=121+4r2rdrdθ =18θ=02πr=12ddr(1+4r2)(1+4r2)12drdθ =18θ=02π(1+4r2)3/23/2r=12dθ =112θ=02π(171755)dθ =(171755)π6= \int_{\theta=0}^{2\pi}\int_{r=1}^2\sqrt{1+4r^2}rdrd\theta\\\ \\=\dfrac{1}{8}\int_{\theta =0}^{2\pi}\int_{r=1}^2\dfrac{d}{dr}(1+4r^2)(1+4r^2)^{\frac{1}{2}}drd\theta\\\ \\=\dfrac{1}{8}\int_{\theta =0}^{2\pi}\dfrac{(1+4r^2)^{3/2}}{3/2}|_{r=1}^{2}d\theta\\\ \\=\dfrac{1}{12}\int_{\theta=0}^{2\pi}(17\sqrt{17}-5\sqrt 5)d\theta\\\ \\=\dfrac{(17\sqrt{17}-5\sqrt 5)\pi}{6}



Surface Area =(171755)π6\therefore \boxed{\text{Surface Area }=\dfrac{(17\sqrt{17}-5\sqrt 5)\pi}{6}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS