For any point (x,y,z) on the surface x=4−y2−z2
F=x+y2+z2−4
Then,
▽F=i+yj+2zk
∣▽F∣=1+4y2+4z2
Here, p=i, ∣▽F⋅p∣=∣1∣=1
Surface of paraboloid x=4−y2−z2 that lies above the ring 1≤y2+z2≤4 in the y-z plane.
Take y=rcosθ, z=rsinθ then 1≤r2≤4
Then, dydz=rdrdθ, 1≤r≤2 and 0≤θ≤2θ
∴ Surface area S=∫∫R∣▽F⋅p∣∣▽F∣dA=∫∫R1+4y2+4z2dydz
=∫θ=02π∫r=121+4r2rdrdθ =81∫θ=02π∫r=12drd(1+4r2)(1+4r2)21drdθ =81∫θ=02π3/2(1+4r2)3/2∣r=12dθ =121∫θ=02π(1717−55)dθ =6(1717−55)π
∴Surface Area =6(1717−55)π
Comments