Question #195734

Consider the sequence {xn}, which is defined by

x1 = 1, xn+1 = xn +

1

x1 + x2 + · · · + xn

, n ∈ N.

Does {xn} converge? Justify your answer.

(2)

? ? ? ? ?


1
Expert's answer
2021-05-21T10:54:02-0400

x1=1,xn+1=xn+1,x1+x2+....+xnNx_1=1,x_{n+1}=x_n+1, x_1+x_2+....+x_n\in N


Given sequence is-

xn+1=xn+1x_{n+1}=x_n+1


x2=x1+1=2x3=x2+1=2+1=3\Rightarrow x_2=x_1+1=2 \\ \Rightarrow x_3=x_2+1=2+1=3


We get the sequence -

1,2,3,4....,n1,2,3,4....,n


The nthn^{th} term is-


an=1+(n1)1=na_n=1+(n-1)1=n


Using ratio test-


limnan+1an=limnn+1nlim_{n\to \infty}\dfrac{a_{n+1}}{a_n}=lim_{n\to \infty}\dfrac{n+1}{n}


=limn1+1n=1=lim_{n\to \infty} 1+\dfrac{1}{n}\\[9pt]=1


Hence The given sequence xnx_n converges to 1.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS