limx→0x2sin(x2)1−cos(x2).
Expansion of cos x and sinx is
cos(x2)=1−2!x4+o(x5),sin(x2)=x2+o(x4)
herefore, we compute the limit as
limx→0x2(sin(x2))1−cos(x2)=limx→0x2(x2+o(x4))1−1+21x4+o(x5)=limx→0x4+o(x6)21x4+o(x5)=limx→01+x4o(x6)21+x4o(x5)=21.
Comments