Question #188782

Find the following limit x tends to 0 (1-cosx^2/x^2 - x^2 sin x^2)


1
Expert's answer
2021-05-07T11:44:54-0400

limx01cos(x2)x2sin(x2).\lim_{x \to 0} \dfrac{1 - \cos (x^2)}{x^2 \sin(x^2)}.


Expansion of cos x and sinx is


cos(x2)=1x42!+o(x5),sin(x2)=x2+o(x4)cos (x^2) = 1 - \frac{x^4}{2!} + o(x^5) ,\\[9pt] sin (x^2) = x^2 + o(x^4)


herefore, we compute the limit as


limx01cos(x2)x2(sin(x2))=limx011+12x4+o(x5)x2(x2+o(x4))=limx012x4+o(x5)x4+o(x6)=limx012+o(x5)x41+o(x6)x4=12.\lim_{x \to 0} \dfrac{1 - \cos (x^2)}{x^2 (\sin (x^2))} \\[9pt]= \lim_{x \to 0} \dfrac{1 - 1 + \dfrac{1}{2}x^4 + o(x^5)}{x^2(x^2+o(x^4))} \\[9pt] = \lim_{x \to 0} \dfrac{\frac{1}{2}x^4 + o(x^5)}{x^4 + o(x^6)} \\[9pt] = \lim_{x \to 0} \dfrac{\frac{1}{2} + \dfrac{o(x^5)}{x^4}}{1 + \dfrac{o(x^6)}{x^4}} \\[9pt] = \frac{1}{2}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS