Question #188122

Give an example of an series Σan such that Σan is not convergent but the sequence (an) converges to 0


1
Expert's answer
2021-05-07T11:52:28-0400

Solution:

Assume an=ln(n)na_n=\dfrac{\ln (n)}{n}

limnlnnn\lim _{n \rightarrow \infty} \frac{\ln n}{n}

=limn1/n1\\=\lim _{n \rightarrow \infty} \frac{1 / n}{1} [Using L' Hopital rule]

=0=0

Next, Σan=n=1ln(n)n\Sigma a_n= \sum _{n=1}^{\infty \:}\frac{\ln \left(n\right)}{n}

Consider 1andn=1lnnndn=[(lnn)22]1=diverges\int_{1}^{\infty} a_{n} d n=\int_{1}^{\infty} \frac{\ln n}{n} d n=\left[\frac{(\ln n)^{2}}{2}\right]_{1}^{\infty}= diverges

So, by integral series test, 1andn\int_{1}^{\infty} a_{n} d n is divergent, then so is n=1an\sum_{n=1}^{\infty} a_{n}

Thus, we have n=1lnnn\sum_{n=1}^{\infty} \frac{\ln n}{n} is divergent.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS